# Structure-Preserving Finite Element Schemes for the Euler-Poisson Equations

<u>Jordan Hoffart</u> <sup>1</sup> Matthias Maier <sup>1</sup> Ignacio Tomas <sup>2</sup>

<sup>1</sup>Department of Mathematics, Texas A&M University

<sup>2</sup>Department of Mathematics and Statistics, Texas Tech University

#### Collaborators

- ▶ Jean-Luc Guermond (Department of Mathematics, Texas A&M University)
- Martin Kronbichler (Institut f
  ür Mathematik, Universit
  ät Augsburg)
- Bojan Popov (Department of Mathematics, Texas A&M University)
- Eric Tovar (X Computational Physics, Los Alamos National Laboratory)

#### Goal

Briefly describe a structure-preserving finite element scheme for the Euler-Poisson equations.

## The Euler-Poisson Equations

$$\partial_{t}\rho + \nabla \cdot \mathbf{m} = 0$$

$$\partial_{t}\mathbf{m} + \nabla \cdot (\rho^{-1}\mathbf{m}\mathbf{m}^{\mathsf{T}} + Ip) = -\rho\nabla\varphi$$

$$\partial_{t}E + \nabla \cdot (\rho^{-1}\mathbf{m}(E+p)) = -\mathbf{m} \cdot \nabla\varphi$$

$$-\Delta\varphi = \alpha\rho$$

 $ho(\mathbf{x},t)>0$  mass density  $\mathbf{m}(\mathbf{x},t)\in\mathbb{R}^d$  momentum  $E(\mathbf{x},t)>0$  total energy  $p=(\gamma-1)(E-|\mathbf{m}|^2/(2\rho))$  pressure given by an equation of state  $\varphi(\mathbf{x},t)\in\mathbb{R}$  scalar potential  $\alpha\in\mathbb{R}$  coupling constant

#### Structure

- **Positivity of density:**  $\rho > 0$
- Positivity of internal energy:  $e = E |\mathbf{m}|^2/(2\rho) > 0$
- Local minimum principle on the specific entropy:  $s \ge \min_{x \in \Omega} s_0(x)$ ,  $s = e\rho^{-\gamma}$
- Formal energy balance:

$$rac{d}{dt}\int_{\Omega}E+rac{1}{2lpha}|
ablaarphi|^{2}\,dx= ext{boundary terms}$$

## Operator Splitting

Strang / Yanenko operator splitting:

1. Given a discrete state  $(\mathbf{u}^n = (\rho^n, \mathbf{m}^n, E^n), \varphi^n)$ , compute a partial update  $\mathbf{u}^{n+1,1}$  by discretizing and solving the Euler subsystem

$$\partial_t \mathbf{u} + \nabla \cdot F(\mathbf{u}) = 0$$

$$F(\mathbf{u}) = \begin{bmatrix} \mathbf{m}^\mathsf{T} \\ \rho^{-1} \mathbf{m} \mathbf{m}^\mathsf{T} + Ip \\ \rho^{-1} \mathbf{m}^\mathsf{T} (E + p) \end{bmatrix}$$

2. Use the partial update  $(\mathbf{u}^{n+1,1}, \varphi^n)$  to compute the full update  $(\mathbf{u}^{n+1}, \varphi^{n+1})$  by discretizing and solving the source-dominated subsystem

$$\partial_t \mathbf{u} = \begin{bmatrix} 0 \\ -\rho \nabla \varphi \\ -\mathbf{m} \cdot \nabla \varphi \end{bmatrix}$$
$$\partial_t \Delta \varphi = \alpha \nabla \cdot \mathbf{m}$$

#### Finite Elements

- Possibly non-affine quadrilateral(hexahedral) mesh
- lackbox Continuous bi(tri)-linear nodal finite element space  $\mathbb{H}_h$  with basis  $\{\chi_i\}$
- Discontinuous bi(tri)-linear nodal finite element space  $\mathbb{V}_h$  with basis  $\{\psi_i\}$
- Discretize  $\rho_h^n = \sum_i \varrho_i^n \psi_i$ ,  $\mathbf{m}_h^n = \sum_i \mathbf{M}_i^n \psi_i$ ,  $E_h^n = \sum_i \mathcal{E}_i^n \psi_i$ ,  $\mathbf{v}_h^n = \sum_i \mathbf{V}_i^n \psi_i$ ,  $\varrho_i^n \mathbf{V}_i^n = \mathbf{M}_i^n$ ,  $\varphi_h^n = \sum_i \Phi_i^n \chi_i$
- Lumped inner product

$$\langle f, g \rangle = \sum_{K} \sum_{i} f(\mathbf{x}_{K,i}) g(\mathbf{x}_{K,i}) \int_{K} \psi_{K,i} dx$$



## Discretizing the Euler Subsystem

Graph viscosity and convex limiting (Guermond, Nazarov, Popov, Tomas 2018):

$$m_{i} \frac{\mathbf{u}_{i}^{n+1,1,L} - \mathbf{u}_{i}^{n}}{\tau_{n}} + \sum_{j} F(\mathbf{u}_{j}^{n}) \cdot \mathbf{c}_{ij} - d_{ij}^{n,L}(\mathbf{u}_{j}^{n} - \mathbf{u}_{i}^{n}) = 0$$

$$m_{i} = \int_{\Omega} \psi_{i} \, dx, \quad \mathbf{c}_{ij} = \int_{\Omega} \psi_{i} \nabla \psi_{j} \, dx$$

$$\sum_{j} m_{ij} \frac{\mathbf{u}_{j}^{n+1,1,H} - \mathbf{u}_{j}^{n}}{\tau_{n}} + F(\mathbf{u}_{j}^{n}) \cdot \mathbf{c}_{ij} - d_{ij}^{n,H}(\mathbf{u}_{j}^{n} - \mathbf{u}_{i}^{n}) = 0$$

$$\mathbf{u}_{i}^{n+1,1} = \mathbf{u}_{i}^{n+1,1,L} + \sum_{i} \ell_{ij}^{n} \mathbf{P}_{ij}^{n}$$

## Discretizing the Source-Dominated System

Main challenge: discretize

$$\rho \partial_t \mathbf{v} = -\rho \nabla \varphi$$
$$\partial_t \Delta \varphi = \alpha \nabla \cdot (\rho \mathbf{v})$$

$$a_{\tau_n}^{\pm}(\varphi,\omega) = \int_{\Omega} \nabla \varphi \cdot \nabla \omega \, d\mathbf{x} \pm \frac{\tau_n^2 \alpha}{4} \langle \rho_h^n \nabla \varphi, \nabla \omega \rangle$$

Given  $(\mathbf{v}_h^n, \varphi_h^n) \in \mathbb{V}_h^d \times \mathbb{H}_h$ , find  $(\mathbf{v}_h^{n+1}, \varphi_h^{n+1}) \in \mathbb{V}_h^d \times \mathbb{H}_h$  for which

$$\begin{aligned} \mathbf{a}_{\tau_n}^+(\varphi_h^{n+1}, \omega_h) &= \mathbf{a}_{\tau_n}^-(\varphi_h^n, \omega_h) + \tau_n \alpha \langle \rho_h^n \mathbf{v}_h^n, \nabla \omega_h \rangle \\ \langle \rho_h^n \mathbf{v}_h^{n+1}, \mathbf{z}_h \rangle &= \langle \rho_h^n \mathbf{v}_h^n, \mathbf{z}_h \rangle - \frac{\tau_n}{2} \langle \rho_h^n (\nabla \varphi_h^{n+1} - \nabla \varphi_h^n), \mathbf{z}_h \rangle \end{aligned}$$

for all  $(\mathbf{z}_h, \omega_h) \in \mathbb{V}_h^d \times \mathbb{H}_h$ 

### Main Result

## Theorem (Maier, Tomas 2022)

Consider the Euler-Poisson equations on a bounded Lipschitz domain  $\Omega$  with  $\varphi=0$  and  $\mathbf{m}\cdot n=0$  on  $\partial\Omega$  and with prescribed initial conditions. Then the operator-splitting discretization scheme just described is invariant-domain preserving and satisfies a discrete version of the formal energy balance:

$$\sum_{i} m_{i} E_{i}^{n+1} + \frac{1}{2\alpha} \|\nabla \varphi_{h}^{n+1}\|_{L^{2}(\Omega)}^{2} = \sum_{i} m_{i} E_{i}^{n} + \frac{1}{2\alpha} \|\nabla \varphi_{h}^{n}\|_{L^{2}(\Omega)}^{2}$$

## Summary and Outlook

- We briefly described a structure-preserving finite element scheme for the Euler-Poisson equations
- Next step: couple the Euler equations with other PDEs (Maxwell's equations) and try to develop more structure-preserving schemes

#### References

- M. MAIER, J. SHADID, I. TOMAS, Local-in-time structure-preserving finite-element schemes for the Euler-Poisson equations, Communications in Computational Physics, (2023)
- ▶ J.-L.GUERMOND, M. NAZAROV, B. POPOV, I. TOMAS, Second-order invariant domain preserving approximation of the Euler equations using convex limiting, SIAM J. Sci. Comput., 40 5 (2018) A3211–A3239