Appendix A
Taylor’s Theorem

The essential tool in the development of numerical methods is Taylor’s
theorem. The reason is simple, Taylor’s theorem will enable us to approx-
imate a function with a polynomial, and polynomials are easy to compute
(most of the time). To start, we define what it means for a function to be C™.

Definition A.1. Given a non-negative integer n, and an interval a < z < b,
stating that f € C"(a,b) means that f(z), f'(z), f'(x), ---, f(™)(x) exist
and are continuous functions on the interval a < x <b.

Note that this definition does not follow the usual convention for exponents.
In particular, f € C(a,b) and f € C°(a,b) are the same statement, which are
both different than stating that f € C1(a,b). If f € C(a,b), or equivalently
if f € C%a,b), then the function is continuous on the interval. In contrast,
f € CY(a,b) means that f(z) and f’(x) are continuous on the interval. Also,
to state that f € C*°(a,b) means f(z) and all of its derivatives are defined
and continuous for a < x < b.
We now state Taylor’s theorem.

Theorem A.1. Given a function f(x), assume that f € C"(zp,xR). In
this case, if x and x + h are points in the interval (zr,xR), then

1 1
Fla+h) = f(2) +hf () + SH2 0" (@) o+ RO @) + Rayr, (A1)
where the remainder is

1

Ry = —— "D (), A2
and n is a point between x and x + h.
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The result in (A.1) is known as Taylor’s theorem with remainder. The mystery
point 7 in (A.2) is not known other than it is somewhere in the given interval.
Writing out the first few cases we have that

f(x+h) = f(z)+hf(n),
o+ h) = (@) + B (@) + Sh2 ().

2
Floh) = F()+ hf(2) + 5020 ) + Sh )

The n’s in these formulas are not the same. Usually the exact value of 7 is
not important because the remainder term is dropped when using Taylor’s
theorem to derive an approximation of a function. Doing this, the above
expressions become

flx+h) = f(x), (A.3)
fx+h) = f(x)+ hf'(x), (A.4)
Fa+h) ~ f(z)+hf'(@) + %h? (). (A5)

As a function of h, (A.3) is a constant approximation, (A.4) is a linear ap-
proximation, and (A.5) is a quadratic approximation.

There are various ways to write a Taylor expansion. One is as stated in
the above theorem, which is

Fla+h) = £(2) + /() + G2 @)+ o4 B O a)

The assumption here is that h is close to zero. Another way to write the
expansion is as

F() = @)+ (= a)f @) 5o = aP f(a) + oot (o= ) ) a)

In this case it is assumed that x is close to a. This gives rise to the linear
approximation

F(x) ~ (@) + (x — a)'(a), (A6)
the quadratic approximation
Fla) ~ (@) + (& —a)f'(a) + g (& — ) "(a), (A7)
and the cubic approximation
Fl) ~ F(@) + (@~ a)f' (@) + 3@ — P f"(0) + 5z — )’ f"(a). (AS)

It’s certainly possible to write down higher-order approximations, but they
are not needed in this text.
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A.1 Useful Taylor Series for & Near Zero

f(x) = f(0)+zf(0) + %:L‘Qf"(()) + éx?’f’”(o) b

Power Functions

1 1
(a+2)7 =" +7207 " + 5530y DataT 2+ 2y(y = (g —2)ata T+

2
1
1—=1+a:+:£2+x3+---
—x
m:1+2$+3$2+4$3+"'
1 1 1
\/1+x:1+§x—§x2+ﬁm3+~'
1 1 3 5
=14+ = T2 =3,
— +2:c+8x —|—16x+

Trig Functions

P BV G
sm(x)—x—ggg +§x 4.
arcsin(x)—x+lm3+ix5+
76 40
1 1
COS($)=1—§962+1954+...
m 14 3 5
arccos(z) = 5T~ ” +
1 2
tan(w):x+§x3+ﬁx5+
arctan(r) =z 1x3—|— L x® +
T3 40
1 1 1
t P vrs S H
cotfr) =2 -gr oot
s 1
t = - — s VL
arccot(x) 5~ T3 -

1
sin(a 4+ ) = sin(a) + x cos(a) — 5:1:2 sin(a) + - - -

1
cos(a 4+ ) = cos(a) — zsin(a) — 53:2 cos(a) + - --

tan(a + x) = tan(a) + zsec?(a) + 2 tan(a) sec?(a) + - - -
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Exponential and Log Functions

T 142+ 1 2_|_ 1 3+
e’ = T+ x4+ =x”+ -
2 6
1 1
a® =™ =1 4 zn(a) + 5[30 In(a)]® + E[x In(a))® +---

e =i+ (45 (2) -

Hyperbolic Functions

1 1
sinh(z) = o + 2% + —2° + - -

6 120
arcsinh(z) = x — Ex?’ + %ﬁ 4.
cosh(z) =1+ %xz + 21_4;,;44_...
arccosh(z) = V2z (1 — 1_1295 + TiowQ 4. )
tanh(z) =z — §x3+ 1353;54_...
arctanh(z) = x + %x?’ + %;1;5 4.

A.2 Order Symbol and Truncation Error

As a typical example of how we will use Taylor’s theorem, for A close to zero

1h5—lh7+---

. 1
sm(h) = h — §h3 + g 7'

From this we have the approximations
sin(h) = h,
and

1
sin(h) = h — ghg.

It is useful to have a way to indicate how the next term in the series depends
on h. The big-O notation is used for this, and we write

sin(h) = h + O(h?), (A.9)
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and 1
sin(h) = h — 5}13 + O(h%). (A.10)

In this text, the part of the series that is dropped when deriving an ap-
proximation is often designated as 7. Given where it comes from, 7 is referred
to as the truncation error. Using the above example, we will sometimes write

(A.9) as
sin(h) =h 4+,

where 7 = O(h?). Similarly, (A.10) can be written as
1
sin(h) = h — gh?’ + 7,

where 7 = O(h5).
The definition for big-O is given below. There are more general definitions,
but they are not needed here.

Definition A.2. For h close to zero, 7 = O(h™) means that

. T
pmy o = L

where —oo < L < 00.

We will occasionally need to know how big-O terms combine. The rules that
cover many of the situations we will come across are the following;:

Lemma:

1) If n < 'm, then O(h™) + O(h™) = O(h™).
2) For any nonzero constant a, O(ah™) = aO(h™) = O(h"™).

The proof of these statements comes directly from the definition. As an exam-
ple of how they are used, if f(h) = 1+2h+O(h?®) and g(h) = —4+3h+O(h?)
then
f+2g=1+2h+O(R*) +2[—4 + 3h + O(h*)]
= —7+8h+ O(h%)

For the same reason,
—2f 4+ 6g = —26 + 14h + O(h®).

The last topic concerns two ways that the truncation error can be written.
These come from writing the Taylor series using the remainder term, or else
writing it out as a series. For example, one can write the series version

1 1 1
Sin(h)=h—gh?’—kghs—ﬂh7_|_...7
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as
sin(h) =h+,
where ) ) .
— B3 pd T
T = 3!h +5!h 7!h + . (A.11)

In contrast, the remainder form, coming from (A.1) and (A.2), is

sin(h) =h+,
where 1
T = —§h3 cos(n). (A.12)

In the text, for both cases, the error term is written as 7 = O(h3). For the
series version in (A.11) this should be interpreted as an asymptotic form
of the error. What this means is that as h approaches zero, the first term
approximation of 7 has the stated dependence on h. More explanation about
asymptotic forms of an approximation can be found in Holmes [2013].



