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1 L2(Ω), Inner Products, and Norms

Definition 1. Let Ω be a bounded domain in Rd. The space L2(Ω) is the set

L2(Ω) =

{
u : Ω → R :

∫
Ω

u(x)2 dx <∞
}

of all real-valued functions on Ω that are square-integrable. We add two functions u, v ∈
L2(Ω) pointwise: u+ v : Ω → R is defined by

(u+ v)(x) = u(x) + v(x)

for all x ∈ Ω. We also define the scalar multiplication of u ∈ L2(Ω) by c ∈ R pointwise:
cu : Ω → R is given by

(cu)(x) = cu(x)

for all x ∈ Ω. Finally, we define the product of two functions u, v ∈ L2(Ω) pointwise:
uv : Ω → R is given by

(uv)(x) = u(x)v(x)

for all x ∈ Ω.

Remark 2. With addition and scalar multiplication defined as above, L2(Ω) is a vector space.
Indeed, given c ∈ R, and given u, v ∈ L2(Ω), since the identity

(a+ b)2 ≤ 2a2 + 2b2

holds for any a, b ∈ R, we have∫
Ω

(cu(x) + v(x))2 dx ≤ 2c2
∫
Ω

u(x)2 dx+ 2

∫
Ω

v(x)2 dx <∞.

Also, since the identity
2ab ≤ a2 + b2

holds for any a, b ∈ R, we have that for any u, v ∈ L2(Ω),∫
Ω

|u(x)v(x)| dx ≤ 1

2

∫
Ω

u(x)2 dx+
1

2

∫
Ω

v(x)2 dx <∞.
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This implies that the quantity ∫
Ω

u(x)v(x) dx

is always a well-defined real number for any u, v ∈ L2(Ω).

Definition 3. Given u, v ∈ L2(Ω), let

⟨u, v⟩L2(Ω) =

∫
Ω

u(x)v(x) dx.

Remark 4. Our previous remarks tell us that ⟨u, v⟩L2(Ω) ∈ R for any u, v ∈ L2(Ω). This
defines a map ⟨·, ·⟩L2(Ω) : L

2(Ω)× L2(Ω) → R.

Definition 5. Let V be a vector space. A map ⟨·, ·⟩V : V × V → R is an inner product if

1. (Linearity in the first argument) For any c ∈ R, any u1, u2, v ∈ V ,

⟨cu1 + u2, v⟩V = c⟨u1, v⟩V + ⟨u2, v⟩V .

2. (Symmetry) For any u, v ∈ V ,

⟨u, v⟩V = ⟨v, u⟩V .

3. (Positive-definiteness) For any u ̸= 0 in V ,

⟨u, u⟩V > 0.

Remark 6. Let ⟨·, ·⟩V be an inner product on a vector space V .

1. Linearity in the first argument and symmetry imply that ⟨·, ·⟩V is linear in the second
argument: For any c ∈ R, and u, v1, v2 ∈ V ,

⟨u, cv1 + v2⟩V = c⟨u, v1⟩V + ⟨u, v2⟩V .

Indeed, we have

⟨u, cv1 + v2⟩V = ⟨cv1 + v2, u⟩V = c⟨v1, u⟩V + ⟨v2, u⟩V = c⟨u, v1⟩V + ⟨u, v2⟩V .

Any map on V × V that is linear in both arguments is called a bilinear map.

2. The bilinearity of ⟨·, ·⟩ implies that

⟨0, v⟩V = ⟨v, 0⟩V = 0

for all v ∈ V . Indeed, we have

⟨0, v⟩V = ⟨0 + 0, v⟩V = ⟨0, v⟩V + ⟨0, v⟩V .
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Canceling a ⟨0, v⟩V on both sides gives us one of the equalities. A similar proof holds
for the other. In particular, we have that

⟨0, 0⟩V = 0,

and the positive-definiteness property implies that 0 is the only vector in V with this
property. Furthermore, we have that

⟨u, u⟩V ≥ 0

for all u ∈ V . We refer to this property as being positive semi-definite.

Remark 7. The map ⟨·, ·⟩L2(Ω) : L
2(Ω)× L2(Ω) → R defined by

⟨u, v⟩L2(Ω) =

∫
Ω

u(x)v(x) dx

is an inner product. The linearity and symmetry properties are straightforward from the
definitions. For the positive-definiteness property, we would need to introduce some measure
theory that is beyond the scope of these notes. For now, we will simply believe this fact. We
refer to this inner product as the L2(Ω) inner product.

Proposition 8 (The Cauchy-Schwarz Inequality). Let ⟨·, ·⟩V be an inner product on a vector
space V . Then for any u, v ∈ V ,

⟨u, v⟩2V ≤ ⟨u, u⟩V ⟨v, v⟩V .

Proof. If v = 0, then the result is trivially true based on our previous remarks. We therefore
assume that v ̸= 0, so that ⟨v, v⟩V > 0. Let t = ⟨u, v⟩V /⟨v, v⟩V . Then direct computation
shows

⟨u− tv, u− tv⟩V = ⟨u, u⟩V − 2t⟨u, v⟩V + t2⟨v, v⟩V

= ⟨u, u⟩V − ⟨u, v⟩2V
⟨v, v⟩V

.

Since ⟨u− tv, u− tv⟩V ≥ 0, the inequality follows.

Remark 9. The inequality above is referred to as the Cauchy-Schwarz inequality. We will
write this inequality using slightly different and more common notation later. It is arguably
one of the most important and widely used inequalities in all of mathematics.

Definition 10. Let V be a vector space. A map ∥ · ∥V : V → R is a norm on V if

1. (The triangle inequality) For all u, v ∈ V ,

∥u+ v∥V ≤ ∥u∥V + ∥v∥V .

2. (Absolute homogeneity) For all c ∈ R and all u ∈ V ,

∥cu∥V = |c|∥u∥V .
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3. (Positive-definiteness) For all u ̸= 0 in V ,

∥u∥V > 0.

Remark 11. Let ∥·∥ be a norm on a vector space V . Then the absolute homogeneity property
implies that

∥0∥V = 0.

Indeed, we have
∥0∥V = ∥2 · 0∥V = 2∥0∥V = ∥0∥V + ∥0∥V .

Canceling a ∥0∥V on both sides gives us the result. The positive-definiteness property implies
that 0 is the only vector in V with this property.

Remark 12. Let ⟨·, ·⟩V be an inner product on a vector space V . Then the map ∥·∥V : V → R
given by

∥u∥V =
√

⟨u, u⟩V
is a norm on V . Indeed, the map is well-defined because inner products are positive semi-
definite. The absolute homogeneity property follows from the fact that ⟨·, ·⟩V is bilinear.
The fact that ∥ · ∥V is positive-definite follows from the fact that inner products are positive-
definite. Finally, the Cauchy-Schwarz inequality implies that

∥u+ v∥2V = ⟨u+ v, u+ v⟩V
= ∥u∥2V + 2⟨u, v⟩V + ∥v∥2V
≤ ∥u∥2V + 2∥u∥V ∥v∥V + ∥v∥2

= (∥u∥V + ∥v∥V )2.

The triangle inequality follows from this.

Definition 13. Let ⟨·, ·⟩V be an inner product on a vector space V . The norm ∥ · ∥V on V
given by

∥u∥V =
√

⟨u, u⟩V
is called the induced norm on V .

Remark 14. With a norm ∥·∥V on V induced by an inner product ⟨·, ·⟩V , the Cauchy-Schwarz
inequality states that

|⟨u, v⟩V | ≤ ∥u∥V ∥v∥V
for all u, v ∈ V . This is the more common way to express this inequality.

Remark 15. With the L2(Ω) inner product, the induced norm is given by

∥u∥L2(Ω) =

√∫
Ω

u(x)2 dx.

We refer to the norm as the L2(Ω) norm. Also, the Cauchy-Schwarz inequality in this case
reads ∣∣∣∣∫

Ω

u(x)v(x) dx

∣∣∣∣ ≤
√∫

Ω

u(x)2 dx

√∫
Ω

v(x)2 dx.
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We can actually take this a step further: for any u, v ∈ L2(Ω),∣∣∣∣∫
Ω

u(x)v(x) dx

∣∣∣∣ ≤ ∫
Ω

|u(x)||v(x)| dx ≤

√∫
Ω

u(x)2 dx

√∫
Ω

v(x)2 dx,

since u ∈ L2(Ω) implies that |u| ∈ L2(Ω) and

∥u∥L2(Ω) = ∥|u|∥L2(Ω).

2 H1(Ω), Weak Derivatives, and Vector Calculus

Definition 16. Let Ω be a bounded domain in Rd. The space C∞
0 (Ω) is the set of all

functions φ : Ω → R that

1. have continuous partial derivatives of all orders, and

2. for which there exists a closed and bounded subset Kφ ⊂ Ω where φ = 0 outside of
Kφ.

Property 1 is usually called smoothness, and property 2 is usually called being compactly
supported. Thus C∞

0 (Ω) is the set of all smooth, compactly supported functions on Ω. Some
authors use the notation C∞

c (Ω) to denote this set instead.

Remark 17. With addition and scalar multiplication defined pointwise, C∞
0 (Ω) is a vector

space. Similarly, if multiplication is defined pointwise, then φψ ∈ C∞
0 (Ω) when φ, ψ ∈

C∞
0 (Ω).

Definition 18. Let Ω be a bounded domain in Rd, let u, v ∈ L2(Ω), and i ∈ {1, . . . , d}. We
say that v is a weak ith partial derivative of u if for all φ ∈ C∞

0 (Ω),∫
Ω

u(x)∂iφ(x) dx = −
∫
Ω

v(x)φ(x) dx.

Here, the notation ∂iφ refers to the ith partial derivative of φ in the usual calculus sense.
In this context, we usually call functions in C∞

0 (Ω) test functions. Also, in this context, we
refer to the usual partial derivatives as strong partial derivatives.

Remark 19. If u has a strong ith partial derivative that is square-integrable, then for any
smooth, compactly supported test function φ, since φ = 0 on the boundary of Ω, the usual
integration-by-parts formula gives us∫

Ω

u(x)∂iφ(x) dx = −
∫
Ω

∂iu(x)φ(x) dx.

Therefore, we think of weak partial derivatives as a generalization of strong partial derivatives
that still allow us to perform integration-by-parts calculuations when needed. In particular,
every strong, square-integrable partial derivative is also a weak partial derivative.
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Remark 20. Every function u ∈ L2(Ω) has at most one weak ith partial derivative in L2(Ω).
Therefore, when it exists, we denote the ith weak partial derivative of u ∈ L2(Ω) by ∂iu.
Not every function in L2(Ω) has a weak ith partial derivative. We will not prove these facts
here, as they require more analysis than we wish to go into.

Remark 21. Most of the usual calculus facts about strong derivatives also carry over to weak
derivatives. In particular, if u, v ∈ L2(Ω) have ith weak partial derivatives in L2(Ω), then

1. u+ v has a weak ith partial derivative in L2(Ω) given by

∂i(u+ v) = ∂iu+ ∂iv,

2. for any c ∈ R, cu has a weak ith partial derivative in L2(Ω) given by

∂i(cu) = c∂iu,

and

Definition 22. Let Ω be a bounded domain in Rd. Then the space H1(Ω) is the set

H1(Ω) = {u ∈ L2(Ω) : ∂iu ∈ L2(Ω) for each i = 1, . . . , d}

of all functions u ∈ L2(Ω) that have weak ith partial derivatives in L2(Ω) for each i ∈
{1, . . . , d}. Sometimes we will simply call the weak partial derivatives as partial derivatives.

Remark 23. With addition and scalar multiplication defined pointwise, H1(Ω) is a vector
space. Since it is a subspace of L2(Ω), the L2(Ω) inner product / induced norm also gives
us an inner product / norm on H1(Ω). However, we can also define a new inner product /
norm on H1(Ω) that encodes information about the weak derivatives of a function in H1(Ω).

Definition 24. Given u, v ∈ H1(Ω), let

⟨u, v⟩H1(Ω) =

∫
Ω

u(x)v(x) +
d∑

i=1

∂iu(x)∂iv(x) dx.

Remark 25. A few remarks about the above definition are in order:

1. Since u, v, and its partial derivatives are in L2(Ω), the quantity ⟨u, v⟩H1(Ω) is a well-
defined real number.

2. Recall from vector calculus that the gradient of a differentiable scalar-valued function
u : Ω → R is the function ∇u : Ω → Rd given by

∇u = (∂1u, . . . , ∂du).

We can extend this notation to H1(Ω) by defining the (weak) gradient of u ∈ H1(Ω)
to be the map ∇u : Ω → Rd given by the same formula. If we also recall that the dot
product of two vectors x, y ∈ Rd is given by

x · y =
d∑

i=1

xiyi,

then we have that

⟨u, v⟩H1(Ω) =

∫
Ω

u(x)v(x) +∇u(x) · ∇v(x) dx.
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3. We can also write

⟨u, v⟩H1(Ω) = ⟨u, v⟩L2(Ω) +
d∑

i=1

⟨∂iu, ∂iv⟩L2(Ω) = ⟨u, v⟩L2(Ω) + ⟨∇u,∇v⟩L2(Ω),

where the notation

⟨∇u,∇v⟩L2(Ω) :=
d∑

i=1

⟨∂iu, ∂iv⟩L2(Ω).

4. The map ⟨·, ·⟩H1(Ω) : H
1(Ω) × H1(Ω) → R defined by the formula above is an inner

product on H1(Ω). This is most easily proven from item 3. We call this inner product
the H1(Ω) inner product.

5. The induced norm from the H1(Ω) inner product is given by

∥u∥H1(Ω) =

√√√√∫
Ω

u(x)2 +
d∑

i=1

(∂iu(x))2 dx

=

√∫
Ω

u(x)2 + |∇u(x)|2 dx

=

√√√√∥u∥2L2(Ω) +
d∑

i=1

∥∂iu∥2L2(Ω)

=
√

∥u∥2L2(Ω) + ∥∇u∥2L2(Ω),

where we recall that the usual Euclidean norm of a vector x ∈ Rd is given by

|x| =

√√√√ d∑
i=1

x2i ,

and the notation
∥∇u∥L2(Ω) := ∥|∇u|∥L2(Ω).

6. From item 5, its immediate that

∥u∥L2(Ω) ≤ ∥u∥H1(Ω)

for every u ∈ H1(Ω).

3 H1
0(Ω) and the Poincaré Inequality

Definition 26. Let Ω be a bounded domain in Rd with boundary ∂Ω. The space H1
0 (Ω) is

the set
H1

0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}.
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Remark 27. With addition and scalar multiplication defined pointwise, H1(Ω) is a vector
space. Since it is a subspace of H1(Ω), both the H1(Ω) and the L2(Ω) inner products /
norms give inner products / norms on H1

0 (Ω). However, we can use the fact that functions
in H1(Ω) vanish on the boundary to give us a more convenient norm / inner product to work
with.

Theorem 28 (Poincaré Inequality). Let Ω be a bounded domain in Rd. There exists a
constant CP > 0 such that for all u ∈ H1

0 (Ω),

∥u∥L2(Ω) ≤ CP∥∇u∥L2(Ω).

Proof. We will not prove this here, as it involves some analysis that is beyond the scope of
these notes.

Remark 29. The inequality above is known as a Poincaré inequality. It relates the norm of
a function with the norm of its derivative. This inequality is usually expressed as∫

Ω

u(x)2 dx ≤ C

∫
Ω

|∇u(x)|2 dx.

Setting C = C2
P and taking square roots gives us our version of the inequality. We stress

that this result holds on H1
0 (Ω), but not on H1(Ω). As a counterexample, take u(x) = 1

for x ∈ Ω. Then u ∈ H1(Ω), ∥u∥L2(Ω) is the volume of Ω, which is assumed to be strictly
positive, and ∥∇u∥L2(Ω) = 0.

Definition 30. Let ∥ · ∥1, ∥ · ∥2 be two norms on a vector space V . Then the two norms are
equivalent if there are constants c, C > 0 such that

c∥u∥1 ≤ ∥u∥2 ≤ C∥u∥1

for all u ∈ V .

Remark 31. The previous definition can be intuitively thought of as saying that two norms
on a vector space are essentially the same. For instance, if two norms are equivalent, then
any inequalities ∥u∥1 ≤ ∥v∥1 in one of the norms also imply ∥u∥2 ≤ C∥v∥2 in the other norm
for some constant C that is independent of u and v. Also, any sequences that converge in
one norm must also converge in the other norm.

Corollary 32. On H1
0 (Ω),

1. the map ⟨·, ·⟩H1
0 (Ω) : H

1
0 (Ω)×H1

0 (Ω) → R given by

⟨u, v⟩H1
0 (Ω) = ⟨∇u,∇v⟩L2(Ω)

is an inner product,

2. for the induced norm ∥ · ∥H1
0 (Ω) =

√
⟨∇·,∇·⟩L2(Ω), there is a constant CP > 0 such that

for any u ∈ H1
0 (Ω),

∥u∥L2(Ω) ≤ CP∥u∥H1
0 (Ω).
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3. the induced norm ∥ · ∥H1
0 (Ω) is equivalent to the H1(Ω) norm,

Proof. The map ⟨·, ·⟩H1
0 (Ω) is well-defined, symmetric, and linear in the first argument from

our previous work. To see that it is positive-definite, let u ∈ H1
0 (Ω) be such that u ̸= 0.

Then the Poincaré inequality implies

0 < ∥u∥2L2(Ω) ≤ C2
P ⟨u, u⟩H1

0 (Ω).

Thus ⟨·, ·⟩H1
0 (Ω) is an inner product.

The Poincaré inequality and the definition of the induced norm also shows that

∥u∥L2(Ω) ≤ CP∥u∥H1
0 (Ω).

We have immediately from the definitions that

∥u∥H1
0 (Ω) ≤ ∥u∥H1(Ω).

On the other hand, using the definitions of the different norms plus our observations above
gives us

∥u∥2H1(Ω) = ∥u∥2L2(Ω) + ∥u∥2H1
0 (Ω) ≤ (CP + 1)∥u∥2H1

0 (Ω).

Taking square roots shows us that

∥u∥H1
0 (Ω) ≤ ∥u∥H1(Ω) ≤

√
CP + 1∥u∥H1

0 (Ω).

Thus the two norms are equivalent on H1
0 (Ω).

Remark 33. Since this proof relies on the Poincaré inequality, we stress that the H1
0 (Ω)

inner product / norm, despite being well-defined for functions in H1(Ω), is not necessarily
an inner product / norm on H1(Ω). The only condition that is violated is the positive-
definite condition. As a counterexample, take u(x) = 1 for x ∈ Ω. Then u ̸= 0, but ∇u = 0,
so ⟨u, u⟩H1

0 (Ω) = ∥u∥H1
0 (Ω) = 0.
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