# MATH 610 Homework 2 Hints

#### Jordan Hoffart

July 25, 2025

## 1 Exercise 1

## 1.1 Problem 1

Suppose that you have a smooth function u that satisfies the boundary conditions u(0) = u(1) = 0 and which solves the ODE

$$-(ku')' + bu' + qu = f$$

on (0,1). Let v be another smooth function that also satisfies the boundary conditions. Multiply the ODE by v and integrate by parts to arrive at an expression of the form

$$a(u, v) = F(v)$$

where a(u,v) involves integrals with u',v',u,v,k,b, and q, and F(v) involves an integral with f and v. Now determine what Sobolev space V that u and v should belong to so that the bilinear form  $a:V\times V\to \mathbb{R}$  and the linear form  $F:V\to \mathbb{R}$  are well-defined, and which also incorporates the boundary conditions. The weak formulation is the following problem: find  $u\in V$  such that

$$a(u, v) = F(v)$$

for all  $v \in V$ .

## 1.2 Problem 2

Such stability estimates are also called a priori (a Latin phrase meaning "from before") estimates. They are called such estimates because they are done *before* we actually know if we have a solution to the ODE. They always start in the following way: suppose that we have a solution  $u \in V$  (where V is chosen in problem 1) such that

$$a(u, v) = F(v)$$

for all  $v \in V$  (where a and F are also from problem 1). If you chose F correctly, you should be able to show that

$$F(v) \le ||f||_{L^2(0,1)} ||v||_{L^2(0,1)}$$

for all  $v \in V$ . If you chose a correctly, you should be able to show that

$$a(u, u) \ge \overline{k} \|u'\|_{L^2(0,1)}^2$$

for all  $u \in V$ . The last ingredient you will need is the following Poincaré inequality:

**Theorem 1.** Let  $x_0 \in [a,b]$  and let  $H^1_{x_0}(a,b)$  be the space of all functions  $u \in H^1(a,b)$  such that  $u(x_0) = 0$ . Then there is a constant C > 0 such that

$$||u||_{L^2(a,b)} \le C||u'||_{L^2(a,b)}.$$

*Proof.* If u is a smooth function such that  $u(x_0) = 0$ , then for any  $x > x_0$  we have that

$$u(x) = \int_{x_0}^x u'(t) \, \mathrm{d}t.$$

Therefore, by Cauchy-Schwarz,

$$|u(x)| \le \int_{x_0}^x |u'(t)| dt \le \sqrt{b-a} ||u'||_{L^2(a,b)}.$$

Now for  $x < x_0$ , we have that

$$u(x) = -\int_{x}^{x_0} u'(t) dt,$$

so we can repeat a similar argument to conclude that

$$|u(x)| \le \sqrt{b-a} ||u'||_{L^2(a,b)}$$

for all  $x \in [a, b]$ . This implies that

$$||u||_{L^2(a,b)} \le (b-a)||u'||_{L^2(a,b)}$$

for all smooth functions u such that  $u(x_0) = 0$ .

Now let  $u \in H^1_{x_0}(a,b)$ . Then since smooth functions that vanish at  $x_0$  are dense in  $H^1_{x_0}(a,b)$ , there is a sequence  $(u_n)_n$  of smooth functions that vanish at  $x_0$  such that  $\|u-u_n\|_{H^1(a,b)} \to 0$  as  $n \to \infty$ . Then  $\|u-u_n\|_{L^2(a,b)} \to 0$  as  $n \to \infty$  and  $\|u'_n\|_{L^2(a,b)} \to \|u'\|_{L^2(a,b)}$  as  $n \to \infty$ . Then for each n,

$$||u||_{L^{2}(a,b)} \leq ||u_{n}||_{L^{2}(a,b)} + ||u - u_{n}||_{L^{2}(a,b)}$$
  
$$\leq (b-a)||u'_{n}||_{L^{2}(a,b)} + ||u - u_{n}||_{L^{2}(a,b)} \to (b-a)||u'||_{L^{2}(a,b)}$$

as  $n \to \infty$ . This finishes the proof.

Combining everything together will give you the stability result.

## 2 Exercise 2

## 2.1 Problem 1

#### 2.1.1 Part a

Multiply by a test function and integrate by parts. The boundary condition at x = 1 is something we have seen before, but now for the boundary condition at 0, use it to substitute for u'(0). Rearrange everything and you will get something of the form

$$a(u, v) = F(v)$$

where a(u,v) involves integrals with u',v' as well as values u(0),v(0) and  $\beta$ , while F(v) will involve an integral with f,v as well as the values  $v(0),\gamma$ , and  $\beta$ . Once again, look at the bilinear form a and the linear form F to decide which Sobolev space the functions u,v should belong to for the values a(u,v) and F(v) to be well-defined and to also incorporate the boundary conditions from the problem. Hint: you already included the boundary condition at 0 in a weak sense when you did the substitution, but now what about the boundary condition at x=1?

#### 2.1.2 Part b

Check the assumptions of the Lax-Milgram Theorem, which we recall below.

**Theorem 2.** Let V be a Hilbert space with inner product  $(\cdot, \cdot)_V$  and induced norm  $\|v\|_V := \sqrt{(v, v)_V}$ . Let  $a: V \times V \to \mathbb{R}$  and  $F: V \to \mathbb{R}$  be a bilinear form and a linear form on V respectively. Suppose that

1. a is continuous on V: there exists C > 0 such that

$$|a(u,v)| \le C||u||_V||v||_V$$

for all  $v \in V$ 

2. F is continuous on V: there exists C' > 0 such that

$$|F(v)| \le C' ||v||_V$$

for all  $v \in V$ 

3. a is coercive (also known as elliptic) on V: there exists  $\alpha > 0$  such that

$$a(u,u) > \alpha ||u||_V^2$$

for all  $u \in V$ 

Then there is a unique  $u \in V$  such that

$$a(u, v) = F(v)$$

for all  $v \in V$ .

If you chose a, V, and F correctly in part a, you will be able to verify all of these assumptions. For the continuity assumptions, you will need the following, which is a corollary from some of the results in your last homework.

**Theorem 3.** There is a constant C such that

$$|u(x)| \le C||u||_{H^1(a,b)}$$

for all  $x \in [a, b]$  and all  $u \in H^1(a, b)$ .

For coercivity, you will need to use the Poincaré inequality that I showed earlier.

#### 2.1.3 Part c

You can show either an estimate of the form

$$||u||_{H^1(0,1)} \le E(f,\gamma,\beta)$$

or

$$||u'||_{L^2(0,1)} \le \widetilde{E}(f,\gamma,\beta)$$

where u is the solution to the weak problem that we showed exists from part b and  $E(f, \gamma, \beta)$  and  $\widetilde{E}(f, \gamma, \beta)$  are some continuous expressions involving the function f and the boundary data  $\gamma$  and  $\beta$ . By the Poincaré inequality, we have that

$$||u'||_{L^2(0,1)} \le ||u||_{H^1(0,1)} \le C||u'||_{L^2(0,1)}$$

so that the inequalities above are equivalent: one holds for some E iff the other holds for some  $\widetilde{E}$ . The argument is similar to stuff we have done earlier in the homework: you will have to use the coercivity of a, the continuity of F, and possibly the Poincaré inequality. Also, you cannot simply cite Lax-Milgram in this problem since it asks you to derive it yourself.

## 2.1.4 Part d

If  $a(u_1, v) = F(v) = a(u_2, v)$  for all  $v \in V$ , then

$$a(u_1, v) - a(u_2, v) = 0$$

for all  $v \in V$ . Now use bilinearity and coercivity.

#### 2.2 Problem 2

#### 2.2.1 Part a

Suppose u and v are smooth, undo the integration by parts and use the boundary condition u(1) = 0 to get something of the form

$$\int_0^1 (Du - f)v \, dx + (boundary term at x = 0) = 0$$

for all smooth v (and, by density, all  $v \in V$ ), where Du is some expression involving  $u'', \alpha$ , and u. Since V contains functions that vanish at x = 0, argue that this implies

$$\int_0^1 (Du-f)v\,\mathrm{d}x=0 \text{ for all } v\in C_c^\infty(0,1)$$
 (boundary term at  $x=0$ ) = 0 for all  $v\in V$ 

The hint in the homework tells you what ODE u satisfies on (0,1), while picking v to be a smooth function that does not vanish at x=0 in the boundary term equation will give you another boundary term that u must satisfy at x=0. Therefore, your answer should be of the form

ODE that u satisfies on (0,1)boundary condition at x=0boundary condition at x=1

#### 2.2.2 Part b

Same routine as the last energy estimates: use coercivity of the left side, continuity of the right side, and maybe a Poincaré inequality depending on if you're estimating  $||u||_{H^1(0,1)}$  or  $||u'||_{L^2(0,1)}$ .