MATH 610 Homework 3 Hints Jordan Hoffart July 25, 2025 ## 1 Exercise 1 #### 1.1 Problem 1 Multiply by a test function, integrate by parts, and use the boundary conditions. Find the correct Sobolev space V, the right bilinear form $a:V\times V\to \mathbb{R}$, and the right linear form $F:V\to \mathbb{R}$ such that the variational problem reads as follows: Find $u\in V$ such that $$a(u, v) = F(v)$$ for all $v \in V$. #### 1.2 Problem 2 You have to solve problem 1 to get the answer for this problem as well, so the hint is the same. #### 1.3 Problem 3 First find the basis functions for the unit interval (0,1). In other words, find $\widehat{\phi}_i$ for i=1,2,3 that are quadratic polynomials over (0,1) and which $$\widehat{\phi}_1(0) = 1, \qquad \qquad \int_0^1 \widehat{\phi}_1(\widehat{x}) \, d\widehat{x} = 0, \qquad \qquad \widehat{\phi}_1(1) = 0,$$ $$\widehat{\phi}_2(0) = 0, \qquad \qquad \int_0^1 \widehat{\phi}_2(\widehat{x}) \, d\widehat{x} = 1, \qquad \qquad \widehat{\phi}_2(1) = 0,$$ $$\widehat{\phi}_3(0) = 0, \qquad \qquad \int_0^1 \widehat{\phi}_3(\widehat{x}) \, d\widehat{x} = 0, \qquad \qquad \widehat{\phi}_3(1) = 1.$$ Now we map (0,1) onto (x_j,x_{j+1}) via $$T_j(\widehat{x}) = x_j + (x_{j+1} - x_j)\widehat{x}. \tag{1}$$ Convince yourself (and me) that the basis function ϕ_i^j on (x_j, x_{j+1}) that you are looking for is just given by $$\phi_i^j(x) = \widehat{\phi}_i(T_i^{-1}(x))$$ for all $x \in (x_i, x_{i+1})$. ### 1.4 Problem 4 The element stiffness matrix S_j and the element mass matrix M_j are given by $$(S_j)_{i,k} = \int_{x_j}^{x_{j+1}} \frac{\mathrm{d}}{\mathrm{d}x} \phi_i^j(x) \frac{\mathrm{d}}{\mathrm{d}x} \phi_k^j(x) \,\mathrm{d}x,$$ $$(M_j)_{i,k} = \int_{x_j}^{x_{j+1}} \phi_i^j(x) \phi_k^j(x) \,\mathrm{d}x.$$ Use the change of coordinates (1) to transform these integrals into integrals over (0,1) involving the basis functions $\widehat{\phi}_i$ to simplify the computation. #### 1.5 Problem 5 The homework has a typo in it. We define the space V_h as the space of piecewise quadratics over the splitting (x_j, x_{j+1}) without specifying any kind of continuity. However, the variational problem is posed on a subspace V of $H^1(0,1)$. Since functions in $H^1(0,1)$ are continuous, so are functions in V. Since we are working in the conforming setting, i.e. $V_h \subset V$, we must specify that V_h consist of continuous piecewise quadratics on the splitting, otherwise what we are doing doesn't fit into our theoretical framework. The Ritz system is to find $u_h \in V_h$ such that $$a(u_h, v_h) = F(v_h)$$ for all $v_h \in V_h$. Since V_h is finite dimensional, we can choose a basis ψ_1, \ldots, ψ_m for V_h and arrive at the equivalent matrix-vector problem of finding the vector \vec{u}_h of coefficients of u_h with respect to the ψ_i such that $$A_h \vec{u}_h = \vec{F}_h, \tag{2}$$ where $$(A_h)_{i,j} = a(\psi_j, \psi_i),$$ $$(\vec{F}_h)_i = F(\psi_i),$$ $$u_h = \sum_{i=1}^m (\vec{u}_h)_j \psi_j.$$ (3) The particular basis that we choose for V_h is constructed from the ϕ_i^j in the following way. First, we observe that $\phi_2^j = 0$ at the endpoints (x_j, x_{j+1}) , so we can extend these by zero to be functions in V_h . In other words, we let $$\psi_{j+1}(x) = \begin{cases} \phi_2^j(x) & x \in (x_j, x_{j+1}) \\ 0 & \text{otherwise} \end{cases}$$ for $j=0,\ldots,n-1$. This gives us n basis functions defined so far. Next, on two adjacent intervals (x_{j-1},x_j) and (x_j,x_{j+1}) , we have that $\phi_3^{j-1}(x_j)=\phi_1^j(x_j)=1$, while $\phi_3^{j-1}(x_{j-1})=0$ and $\phi_1^j(x_{j+1})=0$. Therefore, we may set $$\psi_{n+j}(x) = \begin{cases} \phi_3^{j-1}(x) & x \in (x_{j-1}, x_j) \\ \phi_1^j(x) & x \in (x_j, x_{j+1}) \\ 0 & \text{otherwise} \end{cases}$$ for $j=1,\ldots,n-1$. This now gives us n-1 more basis functions, so we have 2n basis functions defined so far. Finally, since $\phi_1^0(x_1)=0$ and $\phi_3^{n-1}(x_{n-1})=0$, we set $$\psi_{2n}(x) = \begin{cases} \phi_1^0(x) & x \in (x_0, x_1) \\ 0 & \text{otherwise} \end{cases},$$ $$\psi_{2n+1}(x) = \begin{cases} \phi_3^{n-1}(x) & x \in (x_{n-1}, x_n) \\ 0 & \text{otherwise} \end{cases}.$$ This gives us a grand total of m = 2n + 1 basis functions. The global stiffness and mass matrices S and M are then defined as $$S_{i,j} = \int_0^1 \psi_j'(x)\psi_i'(x) \,\mathrm{d}x,$$ $$M_{i,j} = \int_0^1 \psi_j(x)\psi_i(x) \,\mathrm{d}x.$$ To compute these entries, split up the integrals over the elements (x_j, x_{j+1}) , consider which integrals are nonzero, and use the element-wise stiffness and mass matrices from the previous problem. *Remark* 1. The ordering of the basis is not unique. Here is a re-ordering of the basis above that can be more convenient for writing down the globally assembled stiffness and mass matrices of the problem. First, we set $\theta_1 = \psi_{2n}$. Then we set $\theta_2 = \psi_1$. Then we set $\theta_3 = \psi_{n+1}$. Observe that, when restricted to the first subinterval (x_0, x_1) , θ_1 corresponds to ϕ_1^0 , θ_2 corresponds to ϕ_2^0 , and θ_3 corresponds to ϕ_3^0 . We proceed similarly for the next subinterval, setting $\theta_4 = \psi_2$ and $\theta_5 = \psi_{n+2}$. Then θ_3 corresponds to ϕ_1^1 , θ_4 corresponds to ϕ_2^1 , and θ_5 corresponds to ϕ_3^1 on the subinterval (x_1, x_2) . In general, for interior subintervals (x_j, x_{j+1}) with $1 \leq j \leq n-2$, we have the global basis functions $\theta_{2+3(j-1)+1} = \psi_{n+j}$, $\theta_{2+3(j-1)+2} = \psi_{j+1}$; while for the first subinterval we have $\theta_1 = \psi_{2n+1}$ and $\theta_2 = \psi_1$ and the last subinterval (x_{n-1}, x_n) we have $\theta_{2n-1} = \psi_{2n-1}$, $\theta_{2n} = \psi_n$, and $\theta_{2n+1} = \psi_{2n+1}$. This ordering of the basis functions is more localized in the sense that basis function θ_j only has nonzero interactions with basis functions θ_{j-1} , itself, and θ_{j+1} . However, it is less convenient to write down than the previous one. ## 1.6 Problem 6 The right hand side of the Ritz system is just given by (3). If we replace the boundary condition at x = 0, then the space of the variational problem V changes as well as the conforming finite element space V_h and the bilinear form a and linear form F. Call the new discrete space V_{h0} , the new bilinear form a_0 , and the new linear form F_0 . Using the basis of V_h , determine the corresponding basis for V_{h0} constructed as in the last problem, and use this new basis to recompute the Ritz system (2).