
MATH 610 Homework 3 Hints
Jordan Hoffart

July 25, 2025

1 Exercise 1
1.1 Problem 1
Multiply by a test function, integrate by parts, and use the boundary conditions.
Find the correct Sobolev space V , the right bilinear form a : V × V → R, and
the right linear form F : V → R such that the variational problem reads as
follows: Find u ∈ V such that

a(u, v) = F (v)

for all v ∈ V .

1.2 Problem 2
You have to solve problem 1 to get the answer for this problem as well, so the
hint is the same.

1.3 Problem 3
First find the basis functions for the unit interval (0, 1). In other words, find φ̂i
for i = 1, 2, 3 that are quadratic polynomials over (0, 1) and which

φ̂1(0) = 1,

∫ 1

0

φ̂1(x̂) dx̂ = 0, φ̂1(1) = 0,

φ̂2(0) = 0,

∫ 1

0

φ̂2(x̂) dx̂ = 1, φ̂2(1) = 0,

φ̂3(0) = 0,

∫ 1

0

φ̂3(x̂) dx̂ = 0, φ̂3(1) = 1.

Now we map (0, 1) onto (xj , xj+1) via

Tj(x̂) = xj + (xj+1 − xj)x̂. (1)
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Convince yourself (and me) that the basis function φji on (xj , xj+1) that you
are looking for is just given by

φji (x) = φ̂i(T
−1
j (x))

for all x ∈ (xj , xj+1).

1.4 Problem 4
The element stiffness matrix Sj and the element mass matrix Mj are given by

(Sj)i,k =

∫ xj+1

xj

d

dx
φji (x)

d

dx
φjk(x) dx,

(Mj)i,k =

∫ xj+1

xj

φji (x)φ
j
k(x) dx.

Use the change of coordinates (1) to transform these integrals into integrals over
(0, 1) involving the basis functions φ̂i to simplify the computation.

1.5 Problem 5
The homework has a typo in it. We define the space Vh as the space of piecewise
quadratics over the splitting (xj , xj+1) without specifying any kind of continuity.
However, the variational problem is posed on a subspace V of H1(0, 1). Since
functions in H1(0, 1) are continuous, so are functions in V . Since we are working
in the conforming setting, i.e. Vh ⊂ V , we must specify that Vh consist of
continuous piecewise quadratics on the splitting, otherwise what we are doing
doesn’t fit into our theoretical framework.

The Ritz system is to find uh ∈ Vh such that

a(uh, vh) = F (vh)

for all vh ∈ Vh. Since Vh is finite dimensional, we can choose a basis ψ1, . . . , ψm

for Vh and arrive at the equivalent matrix-vector problem of finding the vector
~uh of coefficients of uh with respect to the ψi such that

Ah~uh = ~Fh, (2)

where

(Ah)i,j = a(ψj , ψi),

(~Fh)i = F (ψi), (3)

uh =

m∑
j=1

(~uh)jψj .
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The particular basis that we choose for Vh is constructed from the φji in the
following way. First, we observe that φj2 = 0 at the endpoints (xj , xj+1), so we
can extend these by zero to be functions in Vh. In other words, we let

ψj+1(x) =

{
φj2(x) x ∈ (xj , xj+1)

0 otherwise

for j = 0, . . . , n−1. This gives us n basis functions defiend so far. Next, on two
adjacent intervals (xj−1, xj) and (xj , xj+1), we have that φj−1

3 (xj) = φj1(xj) = 1,
while φj−1

3 (xj−1) = 0 and φj1(xj+1) = 0. Therefore, we may set

ψn+j(x) =


φj−1
3 (x) x ∈ (xj−1, xj)

φj1(x) x ∈ (xj , xj+1)

0 otherwise

for j = 1, . . . , n−1. This now gives us n−1 more basis functions, so we have 2n
basis functions defined so far. Finally, since φ01(x1) = 0 and φn−1

3 (xn−1) = 0,
we set

ψ2n(x) =

{
φ01(x) x ∈ (x0, x1)

0 otherwise
,

ψ2n+1(x) =

{
φn−1
3 (x) x ∈ (xn−1, xn)

0 otherwise
.

This gives us a grand total of m = 2n+ 1 basis functions.
The global stiffness and mass matrices S and M are then defined as

Si,j =

∫ 1

0

ψ′
j(x)ψ

′
i(x) dx,

Mi,j =

∫ 1

0

ψj(x)ψi(x) dx.

To compute these entries, split up the integrals over the elements (xj , xj+1),
consider which integrals are nonzero, and use the element-wise stiffness and
mass matrices from the previous problem.
Remark 1. The ordering of the basis is not unique. Here is a re-ordering of the
basis above that can be more convenient for writing down the globally assembled
stiffness and mass matrices of the problem.

First, we set θ1 = ψ2n. Then we set θ2 = ψ1. Then we set θ3 = ψn+1.
Observe that, when restricted to the first subinterval (x0, x1), θ1 corresponds to
φ01, θ2 corresponds to φ02, and θ3 corresponds to φ03.

We proceed similarly for the next subinterval, setting θ4 = ψ2 and θ5 = ψn+2.
Then θ3 corresponds to φ11, θ4 corresponds to φ12, and θ5 corresponds to φ13 on
the subinterval (x1, x2).
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In general, for interior subintervals (xj , xj+1) with 1 ≤ j ≤ n − 2, we have
the global basis functions θ2+3(j−1)+1 = ψn+j , θ2+3(j−1)+2 = ψj+1; while for
the first subinterval we have θ1 = ψ2n+1 and θ2 = ψ1 and the last subinterval
(xn−1, xn) we have θ2n−1 = ψ2n−1, θ2n = ψn, and θ2n+1 = ψ2n+1.

This ordering of the basis functions is more localized in the sense that basis
function θj only has nonzero interactions with basis functions θj−1, itself, and
θj+1. However, it is less convenient to write down than the previous one.

1.6 Problem 6
The right hand side of the Ritz system is just given by (3). If we replace the
boundary condition at x = 0, then the space of the variational problem V
changes as well as the conforming finite element space Vh and the bilinear form
a and linear form F . Call the new discrete space Vh0, the new bilinear form a0,
and the new linear form F0. Using the basis of Vh, determine the corresponding
basis for Vh0 constructed as in the last problem, and use this new basis to
recompute the Ritz system (2).
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