Calculus

Jordan Hoffart

1 Line integrals

1.1 Scalar fields

The line integral of a scalar-valued function over a curve C in R" is calculated
as

/Cfd8=/abf(7"(t))l7°’(t)dt

where r is a parameterization of the curve. The line integral is independent of
choice of parameterization.

1.2 Vector fields

If F is a vector field, then the line integral along C' is computed as
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where, once again, r is a parameterization of the curve. Unlike the scalar field
case, the integral does depend on the choice of parameterization. However, it
only depends on the orientation. That is, any other parameterization gives the
same absolute value, but possibly a different sign.

1.2.1 Path independence

Fix points xg, 1 in R™. Let C be any curve from zg to z;. Let r be a
parameterization of C with r(a) = xo and r(b) = z;. If F' is a conservative
vector field, meaning that there is a scalar field f such that FF = V f, then we
have that



Therefore, the line integral of a conservative vector field along a curve C' depends
only on its endpoints. It does not depend on the particular choice of curve.

2 Change of variables

Let R, S be two regions in R™ and let ¢ : R — S be a diffeomorphism. Then
for any function f on .S, we have the following change-of-coordinates formula

/Sf=/R(foso)IdetDs0\,

where Dy is the Jacobian of ¢.

3 Chain rule

If f:R® - R™ and g: R™ — RP, then go f : R™ — RP. Looking at the ith
coordinate function and taking the jth partial derivative allows us to apply the
chain rule to get

0i(gio f)=">_((Orgi) © £)0; fr-
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If we denote the Jacobian D as the matrix with (¢,7) entry the jth partial
derivative of the ith coordinate function, then we can write the above equation
as

D(go f)ij=>_((Dg)ino f)(Df)r.;-
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In other words,
D(go f)=((Dg)o f)Df.

Pointwise, and with a pedantic amount of parentheses,
(D(g° f))(x) = (Dg)(f(x)(Df)(x)).

3.1 Change of variables for a derivative

If the Jacobian of f is invertible as a matrix, then we have that

(Dg)o f=D(go f) (Df)~"

If we then combine this with our change-of-variables result from above, we have
that

/Dg=/((D9)Of)|deth\ :/(D(Qof) (Df)~")| det Df|
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which is the change-of-variables formula for a derivative Dg with coordinate
transformation f: R — S.



3.2 The derivative of an inverse

Suppose that f : R® — R” is a diffeomorphism. Then by the chain rule above,
we have that

I=D(fof)=(Df)o(f) D(f ).
This implies that
D(f™) = (Df) o (fH).

That is, the Jacobian of the inverse map is just the matrix inverse of the Jacobian
(composed with the inverse). In particular, if Df is a constant matrix, then so
is D(f~1), and we have that

D(f~) = (D)~

That is, in this special case, the Jacobian of the inverse map is the matrix inverse
of the Jacobian.

4 Divergence theorem

The divergence of a vector field F' is defined as

V-F=>) 0F,.

We recall the divergence theorem, which states that

/V~Fd:v:/ F -nds.
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4.1 Integration by parts in higher dimensions

We now derive an integration-by-parts formula for higher dimensions. We first
observe the following product rule for the divergence operator.

Lemma 1. For a vector field F' and a scalar field g,
V- (Fg)=(V-F)g+F-Vg.
Proof. We just unpack the definitions and use the product rule from 1d.
V- (Fg) = Zaz(Fzg)
= Z 0iFig + Fi0ig

=(V-F)g+F-Vg.



Combining this with the divergence theorem gives us an integration-by-parts
formula.

Lemma 2. For a vector field F' and a scalar field g,

/(V-F)gd;v:/ Fg-nds—/F-ng;v.
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Observe that, in dimension 1, the divergence and gradient operators reduce
to the standard derivative operator. If D is then an interval, the outward normal
n is +1 at the right endpoint and —1 at the left endpoint. The equation above

then reduces to . )
/ F'gdx:Fg\gf/ Fq'dx

which is indeed the usual integration-by-parts formula in 1d.



