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Theorem 1. Let p be a real-valued polynomial in 1 variable of degree k ≥ 1.
Then p(a) = 0 iff there is a polynomial q of degree k − 1 such that

p(x) = (x− a)q(x)

for all x ∈ R.

Proof. Fix x and set h = a− x. Performing a Taylor expansion of p at x using
x+ h and using the fact that p(a) = p(x+ h) = 0 tells us that

0 = p(x) + (a− x)p′(x) + · · ·+ (a− x)k

k!
p(k)(x).

Thus

p(x) = (x− a)p′(x) + · · ·+ (−1)k+1 (x− a)k

k!
p(k)(x).

Setting

q(x) = p′(x)− (x− a)

2
p′′(x) + · · ·+ (−1)k+1 (x− a)k−1

k!
p(k)(x)

proves one direction. The other direction holds from evaluating at x = a.

Corollary 1. If p is a degree at most n polynomial that vanishes at n+1 points,
then p = 0.

Proof. Suppose p vanishes at the points a0, . . . , an. Then since p vanishes at an,
we have that p(x) = (x−an)q(x) where the degree of q is at most n−1. Since an
is distinct from the other ai but p vanishes at the other ai, we must have that q is
a degree at most n−1 polynomial that vanishes at n distinct points. Repeating
this argument inductively allows us to conclude that p(x) = (x−an) · · · (x−a1)C
for some constant C. But p(a0) = 0 and a0 is distinct from the other ai, so we
must have that C = 0. Thus p = 0 identically.

Corollary 2. Let p be a real-valued polynomial in m variables of total degree at
most n. If p vanishes at n+1 points lying along a straight line, then p vanishes
on that line.

Proof. Parameterize the line with a degree one vector-valued polynomial r(t).
Then p(r(t)) is a degree at most n polynomial that vanishes at n + 1 distinct
points t0, . . . , tn. From the previous corollary, p(r(t)) = 0 for all t, which means
that p = 0 on the line.
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Lemma 1. Let p be a polynomial in 2 variables of total degree n. Then for
(x, y) ∈ R2,

p(x+ h, y + k) = p(x, y) +

n∑
m=1

1

m!

m∑
i=0

(
m

i

)
∂m−i
x ∂i

yp(x, y)h
m−iki.

Proof. Let r(t) = (x+ht, y+kt). Then let q(t) = p(r(t)). Then q is a polynomial
of degree n in t, so by Taylor’s Theorem,

q(1) = q(0) + q′(0) + · · ·+ 1

n!
q(n)(0).

By the chain rule, we have that

q′(0) = ∂xp(x, y)h+ ∂yp(x, y)k,

q′′(0) = ∂2
xp(x, y)h

2 + 2∂2
xyp(x, y)hk + ∂2

yp(x, y)k
2,

...

q(n)(0) =

n∑
i=0

(
n

i

)
∂n−i
x ∂i

yp(x, y)h
n−iki.

Putting this altogether gives us the result.

Theorem 2. Let p be a real-valued polynomial in 2 variables of total degree
n ≥ 1. Let L be the line consisting of all points (x, y) such that ax+ by+ c = 0.
Then p vanishes on L iff there is a polynomial q of total degree n− 1 such that

p(x, y) = (ax+ by + c)q(x, y)

for all (x, y) ∈ R2.

Proof. Suppose without loss of generality that a, b, c, ̸= 0, as these special cases
are easier and handled similarly. Fix (x, y) ∈ R2 and consider the point (x,−(ax+
c)/b) on L with the same x coordinate. Then by applying the previous lemma
with h = 0 and k = −(ax+ c)/b− y, we have that

0 = p(x, y) +

n∑
m=1

1

m!
∂m
y p(x, y)(−1)m((ax+ c)/b+ y)m.

Therefore, after rearranging and factoring a term,

p(x, y) = (ax+ by + c)
1

b

n∑
m=1

(−1)m+1

m!
∂m
y p(x, y)(y + (ax+ c)/b)m−1.

Setting

q(x, y) =
1

b

n∑
m=1

(−1)m+1

m!
∂m
y p(x, y)(y + (ax+ c)/b)m−1

proves one direction. The other direction holds by evaluating at a point on
L.
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Corollary 3. If a degree n ≥ 1 polynomial p in 2 variables vanishes at n + 1
points that lie on a straight line, and if the line is characterized as the set of solu-
tions to L(x, y) = 0 for a degree one polynomial L, then p(x, y) = L(x, y)q(x, y)
for some degree n− 1 polynomial q.

Corollary 4. If a degree n ≥ 1 polynomial in 2 variables takes the same value C
at n+1 points that lie on a straight line, and if the line is characharacterized as
the set of solutions to L(x, y) = 0 for a degree one polynomial L, then p(x, y) =
L(x, y)q(x, y) + C for some degree n− 1 polynomial q.

Proof. Apply the previous corollary to the polynomial r(x, y) = p(x, y)−C.
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