Factoring a multivariable polynomial

Jordan Hoffart

Theorem 1. Let p be a real-valued polynomial in 1 variable of degree k > 1.
Then p(a) = 0 iff there is a polynomial q of degree k — 1 such that

p(z) = (z — a)q(z)
for all x € R.

Proof. Fix x and set h = a — x. Performing a Taylor expansion of p at x using
x + h and using the fact that p(a) = p(z + h) = 0 tells us that

a—x k
0= p(x) + (a—2)p/(@) -+ LT 0)

Thus

r—a k
() = (e —a)p'(a) - + () T 0

Setting

Tr—a x—a)k!
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proves one direction. The other direction holds from evaluating at xt =a. 0O

q(z) =p'(x) -

Corollary 1. Ifp is a degree at most n polynomial that vanishes at n+1 points,
then p = 0.

Proof. Suppose p vanishes at the points ag, . .., a,. Then since p vanishes at a,,,
we have that p(xz) = (x—a,)q(x) where the degree of ¢ is at most n—1. Since a,,
is distinct from the other a; but p vanishes at the other a;, we must have that ¢ is
a degree at most n — 1 polynomial that vanishes at n distinct points. Repeating
this argument inductively allows us to conclude that p(z) = (z—ay,) - - - (x—a1)C
for some constant C. But p(ag) = 0 and ag is distinct from the other a;, so we
must have that C' = 0. Thus p = 0 identically. O

Corollary 2. Let p be a real-valued polynomial in m variables of total degree at
most n. If p vanishes at n+ 1 points lying along a straight line, then p vanishes
on that line.

Proof. Parameterize the line with a degree one vector-valued polynomial r(t).
Then p(r(t)) is a degree at most n polynomial that vanishes at n + 1 distinct
points tg, . .., t,. From the previous corollary, p(r(t)) = 0 for all ¢, which means
that p = 0 on the line. O



Lemma 1. Let p be a polynomial in 2 variables of total degree n. Then for
(z,y) € R?,

plx+h,y+k)=pz,y) + Z Z ( )a;n—ia_f/p(x,y)hm—iki_

Proof. Let r(t) = (x+ht,y+kt). Then let ¢(t) = p(r(t)). Then ¢ is a polynomial
of degree n in t, so by Taylor’s Theorem,

1
q(1) = q(0) + ¢'(0) +--- + ﬁq(”)(o)-
By the chain rule, we have that

q'(0) = Oup(x,y)h + Iyp(x, y)k,
q"(0) = &2p(w,y)h* + 202, p(x, y)hk + Opp(x, y)k?,

n

i =3 (7)o elpte ik

i=0
Putting this altogether gives us the result. O

Theorem 2. Let p be a real-valued polynomial in 2 wvariables of total degree
n > 1. Let L be the line consisting of all points (x,y) such that ax + by +c = 0.
Then p vanishes on L iff there is a polynomial q of total degree n — 1 such that

p(z,y) = (az + by + c)q(z, y)
for all (x,y) € R%.

Proof. Suppose without loss of generality that a, b, ¢, # 0, as these special cases
are easier and handled similarly. Fix (z,y) € R? and consider the point (z, —(ax+
¢)/b) on L with the same = coordinate. Then by applying the previous lemma
with h =0 and k = —(axz + ¢)/b — y, we have that

p(z,y) + Z *3’” (=D)™((az +¢)/b+y)™

Therefore, after rearranging and factoring a term,

1 n m+1
p@.y) = (az +by+ )7 Z 07w, y)(y + (az + ) /o)™
m=1
Setting
1 = (_1)m+1 m m—1
q(z,y) = 3 Z Tay p(z,y)(y + (az + c)/b)
m=1

proves one direction. The other direction holds by evaluating at a point on
L. O



Corollary 3. If a degree n > 1 polynomial p in 2 variables vanishes at n + 1
points that lie on a straight line, and if the line is characterized as the set of solu-
tions to L(x,y) = 0 for a degree one polynomial L, then p(x,y) = L(x,y)q(z,y)
for some degree n — 1 polynomial q.

Corollary 4. If a degree n > 1 polynomial in 2 variables takes the same value C
at n+1 points that lie on a straight line, and if the line is characharacterized as
the set of solutions to L(x,y) = 0 for a degree one polynomial L, then p(x,y) =
L(z,y)q(z,y) + C for some degree n — 1 polynomial q.

Proof. Apply the previous corollary to the polynomial r(z,y) = p(z,y)—C. O



