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1 Introduction

We consider a certain finite difference approximation of a particular ODE and we
analyze it. We consider whether the scheme is consistent, stable, and convergent.

2 Problem

Let b > 0 and f : [0, 1] → R. Consider the following BVP: find u : [0, 1] → R
such that

−u′′(x) + bu′(x) = f(x), x ∈ (0, 1),

u(0) = 0,

u(1) = 0.

3 Discretization

Let N > 0, h = 1/(N + 1), and xi = ih for i = 0, . . . , N + 1. Let fi = f(xi).
We discretize the ODE above using the following finite difference scheme: find
a vector u⃗ = (ui)

N+1
i=0 such that

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= fi, i ∈ {1, . . . , N} (1)

v0 = 0,

vN+1 = 0.

4 Existence and uniqueness

We now show that the discretized system has a unique solution. For this, we
need a few lemmas.

Lemma 1 (Maximum principle). Suppose N is large enough so that h ≤ 1/b.
Also suppose that fi ≤ 0 for i ∈ {1, . . . , N}. Then vi ≤ max{v0, vN+1} = 0 for
all i.
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Proof. We rewrite (1) as

(1− bh)︸ ︷︷ ︸
≥0

(vi − vi+1) + (vi − vi−1) = h2fi ≤ 0.

Now if there exists i ∈ {1, . . . , N} such that

vj ≤ vi for all j, (2)

then we have that

0 ≤ (1− bh)︸ ︷︷ ︸
≥0

(vi − vi+1)︸ ︷︷ ︸
≥0

+(vi − vi−1)︸ ︷︷ ︸
≥0

= h2fi ≤ 0.

Therefore, we have that

(1− bh)︸ ︷︷ ︸
≥0

(vi − vi+1)︸ ︷︷ ︸
≥0

+(vi − vi−1)︸ ︷︷ ︸
≥0

= 0.

This implies that vi−1 = vi = vi+1. Applying this to the smallest such i with
property (2) gives us a contradiction, so no such i can exist. In other words, for
all j,

vj ≤ max
j

vj = max{v0, vN+1} = 0.

Corollary 2 (Minimum principle). Suppose N is large enough so that h ≤ 1/b.
Also suppose that fi ≥ 0 for i ∈ {1, . . . , N}. Then vi ≥ min{v0, vN+1} = 0 for
all i.

Proof. Let v−i = −vi and f−
i = −fi. Then v−i satisfies

−
v−i+1 − 2v−i + v−i−1

h2
+ b

v−i+1 − v−i
h

= f−
i , i ∈ {1, . . . , N}

v−0 = 0,

v−N+1 = 0.

We also have that f−
i ≤ 0 for all i. Therefore, by the maximum principle,

−vi = v−i ≤ max{v−0 , v
−
N+1} = max{−v0,−vN+1} = −min{u0, uN+1} = 0

for all i. Thus,
vi ≥ min{v0, vN+1} = 0

for all i.
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Corollary 3 (Existence and uniqueness). Let N be large enough so that h ≤
1/b. For any vector f⃗ = (fi)

N
i=1, there exists a unique vector v⃗ = (vi)

N+1
i=0 such

that

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= fi, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0.

Proof. The above system is a square linear system of equations in the vi, so it
suffices to show that if z⃗ solves

−zi+1 − 2zi + zi−1

h2
+ b

zi+1 − zi
h

= 0, i ∈ {1, . . . , N}

z0 = 0,

zN+1 = 0,

then z⃗ = 0. In this case, we can apply both the maximum and the minimum
principle to z⃗ to conclude that

0 = min{z, zN+1} ≤ zi ≤ max{z0, zN+1} = 0

for all i. Thus z⃗ = 0.

Therefore, we know that the discrete system always produces a solution,
provided that h is sufficiently small. What we will now show is that, whenever
we have a smooth solution to the ODE, the corresponding discrete solution
approximates it in a certain way. We now make this more precise by discussing
consistency, stability, and convergence.

5 Consistency

Now we examine the consistency error of the scheme and its dependence on b
and h.

Lemma 4 (Consistency error). Let u : [0, 1] → R be smooth (more precisely, 3
times differentiable with 2 continuous derivatives) and satisfy

−u′′(x) + bu′(x) = f(x), x ∈ (0, 1),

u(0) = 0,

u(1) = 0.

Let ui = u(xi) for all i.

−ui+1 − 2ui + ui−1

h2
+ b

ui+1 − ui

h
= fi + hRi(b, h), i ∈ {1, . . . , N}

u0 = 0,

uN+1 = 0,
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where fi = f(xi) for all i and

Ri(b, h) =
b

2
u′′(xi) +

1

6
(u′′′(ξi−1)− u′′′(ξi+1)) +

bh

6
u′′′(ξi+1). (3)

Proof. From Taylor’s theorem with remainder in Lagrange form, for i ∈ {1, . . . , N},

ui+1 = ui + hu′(xi) +
h2

2
u′′(xi) +

h3

6
u′′′(ξi+1),

ui−1 = ui − hu′(xi) +
h2

2
u′′(xi)−

h3

6
u′′′(ξi−1),

for some points ξi±1 between xi and xi±1. Therefore,

b
ui+1 − ui

h
= bu′(xi) +

bh

2
u′′(xi) + b

h2

6
u′′′(ξi+1),

−ui+1 − 2ui + ui−1

h2
= −u′′(xi) +

h

6
(u′′′(ξi−1)− u′′′(ξi+1)).

Thus,

−ui+1 − 2ui + ui−1

h2
+ b

ui+1 − ui

h
= −u′′(xi) + bu′(xi)︸ ︷︷ ︸

=fi

+hRi(b, h). (4)

where

Ri(b, h) =
b

2
u′′(xi) +

1

6
(u′′′(ξi−1)− u′′′(ξi+1)) +

bh

6
u′′′(ξi+1).

Lemma 5. If u is as above and also u′′′ is bounded, then there is a constant δb
such that for all h ≤ 1/b,

|Ri(b, h)| ≤ δb

for all i.

Proof. Let M2 = maxx∈[0,1] |u′′(x)|, M3 = maxx∈[0,1] |u′′′(x)|. Then by applying
the triangle inequality,

|Ri(b, h)| ≤ δb = (bM2 +M3)/2.

Remark 6 (Consistency). If v⃗ solves the finite difference approximation with
fi = f(xi) and u solves the ODE with f , then the error ei = vi−ui = vi−u(xi)
satisfies

−ei+1 − 2ei + ei−1

h2
+ b

ei+1 − ei
h

= −hRi(b, h), i ∈ {1, . . . , N}

e0 = 0,

eN+1 = 0,

The previous lemma implies that hRi(b, h) = O(h). Therefore, combined with
above, this implies that the method is consistent of order h.
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6 Stability

Our goal in this section is to prove the following stability result.

Theorem 7 (Stability). There is a constant Cb > 0 only dependent on b and a
tolerance 0 < hb ≤ 1/b only dependent on b such that when N is large enough
so that h = 1/(N + 1) satisfies h ≤ hb we have that the exact solution v⃗ to

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= fi, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0,

satisfies the stability estimate

max
i∈{1,...,N}

|vi| ≤ Cb max
i∈{1,...,N}

|fi|.

6.1 The standard stability argument fails

For instructional purposes, we show that the standard stability argument fails.
We proceed as far as possible, then we mention where exactly the argument
breaks down. Since we are in such a simple setting, we can directly solve the
ODE system for certain source functions f . We consider the case when f = 1.

Lemma 8. Let

w(x) =
x

b
− ebx − 1

b(eb − 1)
. (5)

Then w satisfies

−w′′(x) + bw′(x) = 1, x ∈ (0, 1),

w(0) = 0,

w(1) = 0.

Proof. Follows from direct computation.

Now we find a formula for the consistency error for this particular solution.

Lemma 9. Let w be as above and wi = w(xi). Then

−wi+1 − 2wi + wi−1

h2
+ b

wi+1 − wi

h
= 1−Ri(h), i ∈ {1, . . . , N}

w0 = 0,

wN+1 = 0,

where

Ri(h) =
ebh − 1

bh

bexi−1

eb − 1

1− (1− bh)ebh

bh
≥ 0
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Proof. We have that

wi+1 − wi =
h

b
− 1

b(eb − 1)

(
ebxi+1 − ebxi

)
=

h

b
− ebxi

b(eb − 1)
(ebh − 1).

Thus

wi+1 − wi − (wi − wi−1) = − ebh − 1

b(eb − 1)
(ebxi − ebxi−1)

= − (ebh − 1)2

b(eb − 1)
ebxi−1 .

Hence,

b
wi+1 − wi

h
= 1− bebxi

eb − 1

ebh − 1

bh
,

−wi+1 − 2wi + wi−1

h2
=

bebxi−1

eb − 1

(
ebh − 1

bh

)2

.

Therefore,

−wi+1 − 2wi + wi−1

h2
+ b

wi+1 − wi

h
= 1−Ri(h)

where

Ri(h) = −ebh − 1

bh

b

eb − 1

(
ebxi−1

ebh − 1

bh
− ebxi

)
= −ebh − 1

bh

bexi−1

eb − 1

(1− bh)ebh − 1

bh

=
ebh − 1

bh

bexi−1

eb − 1

1− (1− bh)ebh

bh
≥ 0.

Here is where the standard stability argument breaks down. Since Ri(h) ≥ 0,
we have that for w as in Lemma 9,

−wi+1 − 2wi + wi−1

h2
+ b

wi+1 − wi

h
= 1−Ri(h) ≤ 1, i ∈ {1, . . . , N}

w0 = 0,

wN+1 = 0,

At the moment, we cannot apply the maximum principle or the minimum prin-
ciple to wi, which hinders the usual stability argument. Indeed, if we let v⃗ be
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the unique solution to

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= fi, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0,

then the standard argument is to set v±i = vi ±Mwi, where

M = max
i∈{1,...,N}

|fi|.

Then we have that v⃗+ satisfies

−
v+i+1 − 2v+i + v+i−1

h2
+ b

v+i+1 − v+i
h

= fi + (1−Ri(h))M ≤ fi +M ≥ 0, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0,

and we see that the the inequality needed to apply the minimum principle is
facing the wrong way. A similar difficulty also applies to v⃗−i and the maximum
principle, so we cannot proceed this way. We circuvent this difficulty by using
the general consistency result from earlier.

6.2 The correct stability argument

Now we are ready to prove Theorem 7, which we restate below.

Theorem 10 (Stability). There is a constant Cb > 0 only dependent on b and
a tolerance 0 < hb ≤ 1/b only dependent on b such that when N is large enough
so that h = 1/(N + 1) satisfies h ≤ hb we have that the exact solution v⃗ to

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= fi, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0,

satisfies the stability estimate

max
i∈{1,...,N}

|vi| ≤ Cb max
i∈{1,...,N}

|fi|.

Proof. We let w be as in Lemma 9. Then since w is analytic, we can apply
Lemma 4 to get that

−wi+1 − 2wi + wi−1

h2
+ b

wi+1 − wi

h
= 1 + hRi(b, h), i ∈ {1, . . . , N}

w0 = 0,

wN+1 = 0.
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However, from Lemma 9, we also have that

−wi+1 − 2wi + wi−1

h2
+ b

wi+1 − wi

h
= 1−Ri(h), i ∈ {1, . . . , N}

w0 = 0,

wN+1 = 0.

Comparing these and using Lemma 5 tells us that

Ri(h) = −hRi(b, h) ≤ δbh

for all h ≤ 1/b. Thus, if we set

h ≤ hb := min{1/b, 1/(2δb)},

then we have that
Ri(h) ≤ 1/2

for all i and all h.
Now we can proceed with our usual stability argument. We let v⃗ be the

unique solution to

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= fi, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0,

then we set

v±i =
1

2
vi ±Mwi,

where
M = max

x∈[0,1]
|f(x)|.

Then we have that v⃗+ satisfies

−
v+i+1 − 2v+i + v+i−1

h2
+ b

v+i+1 − v+i
h

=
1

2
fi + (1−Ri(h))M ≥ 1

2
(fi +M) ≥ 0, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0.

Therefore, we can apply the minimum principle and conclude that

1

2
vi +Mwi ≥ 0

for all i, i.e.

−vi ≤ 2wiM ≤ 2∥w∥∞M ≤ 2

b
M,
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where the last equality comes from explicitly bounding w(x) above on [0, 1] from
(5). Similarly, we have that

−
v−i+1 − 2v−i + v−i−1

h2
+ b

v−i+1 − v−i
h

=
1

2
fi − (1−Ri(h))M ≤ 1

2
(fi −M) ≤ 0, i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0.

Therefore, we can apply the maximum principle and conclude that

1

2
vi −Mwi ≤ 0

for all i, i.e.

vi ≤
2

b
M.

In summary, when N is large enough so that h = 1/(N + 1) satisfies

h ≤ hb = min {1/b, 1/(2δb)} ,

we have that the exact solution v⃗ to

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= f(xi), i ∈ {1, . . . , N}

v0 = 0,

vN+1 = 0,

satisfies the stability estimate

max
i∈{1,...,N}

|vi| ≤
2

b
max

i∈{1,...,N}
|fi|.

Remark 11. The particular tolerance hb found above is far from optimal. Nu-
merical experiments show that the solution remains stable simply for h ≤ 1/b.

7 Convergence

Now we combine our consistency and stability results in order to prove conver-
gence.

Theorem 12 (Convergence). Let f : [0, 1] → R be a continuous function.
Suppose that we have a solution u : [0, 1] → R to

−u′′ + bu′ = f on (0, 1)

u(0) = 0

u(1) = 0
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Let N be large enough so that h = 1/(N + 1) ≤ 1/b. Let xi = ih for i ∈
{0, . . . , N + 1} and let fi = f(xi) for all i. Let v⃗ be the unique solution to

−vi+1 − 2vi + vi−1

h2
+ b

vi+1 − vi
h

= fi, i ∈ {1, . . . , N}

v0 = 0

vN+1 = 0

that is smooth (of class C2 and with a bounded third derivative). Let ui = u(xi)
for all i, and let ei = vi − ui for all i. Then there is a constant Cb depending
only on b and a tolerance 0 < hb ≤ 1/b only depending on b such that for all
h ≤ hb,

max
i∈{1,...,N}

|ei| ≤ Cbh.

Proof. We use the consistency error in Lemma 4 and conclude that the ui satisfy

−ui+1 − 2ui + ui−1

h2
+ b

ui+1 − ui

h
= fi + hRi(b, h), i ∈ {1, . . . , N}

u0 = 0,

uN+1 = 0,

Therefore, the errors ei satisfy

−ei+1 − 2ei + ei−1

h2
+ b

ei+1 − ei
h

= −hRi(b, h), i ∈ {1, . . . , N}

e0 = 0,

eN+1 = 0,

Let
gi = −hRi(b, h)

for each i. Then the general stability result from above as well as the general
consistency error lets us conclude that

max
i∈{1,...,N}

|ei| ≤ Cb max
i∈{1,...,N}

h|Ri(b, h)| ≤ Cbδbh

for all h ≤ hb.

8 Conclusion

We analyzed an upwind difference approximation of a particular ODE and
showed that, provided that h is small enough to guarantee stability, the method
converges pointwise uniformly with order 1 rate of convergence.
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