A Few Facts from Calculus (part 1)
1. For any integrable function
$$u: [a:b] \rightarrow \mathbb{R}$$

 $\left| \int_{a}^{b} u(x) dx \right| \leq \int_{a}^{b} [u(x)] dx$
2. If $u: [a:b] \rightarrow \mathbb{R}$ is continuously
differentiable, then for any $a \leq x \leq y \leq b$,
 $\int_{x}^{y} u'(s) ds = u(y) - u(x)$
3. Let $f, g: [a:b] \rightarrow \mathbb{R}$ be differentiable
 $at a \leq x \leq b$. Then $fg: [a:b] \rightarrow \mathbb{R}$
is differentiable out x and
 $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$
4. If $f(x) \leq g(x)$ for all $a \leq x \leq b$, then
 $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$.

5. For any integrable
$$f, g: [a,b] \rightarrow \mathbb{R}$$

 $\left| \int_{a}^{b} f(x)g(x) dx \right| \leq \left(\int_{a}^{b} f(x)^{2} dx \right)^{1/2} \left(\int_{a}^{b} g(x)^{2} dx \right)^{1/2}$

6. If $U: [\alpha, b] \rightarrow \mathbb{R}$ has a local minimum at some $\alpha < \chi_0 < b$, then $U'(\chi_0) = 0$. The same is true if we replace "minimum" by "maximum". Warning: the strict inequalities $\alpha < \chi_0 < b$ are essential; the theorem could fail