HF 1 Hints

1. Start with the hint. Apply Schwavz inequality to $\int_{a}^{x} 1 u^{\prime}(s) d s$. This should give you an inequerry of the form $u(x) \leq(x-a)^{1 / 2}\left(\int_{a}^{x}\left|u^{\prime}(s)\right|^{2} d s\right)^{1 / 2}$.

This holds for all x. The desired inequiling follows from this.
2. We will follow a simitar corgament as in the class notes from 8/30, page III, storting with "multiply by w and integrate". For vS, we will multiply our ODE by $u(x)$ and integrate:

$$
\int_{a}^{b}-\left(p(x) u^{\prime}(x)\right)^{\prime} u(x)+q(x) u^{\prime}(x) u(x)+r(x) u(x)^{2} d x=\int_{a}^{b} f(x) u(x) d x .
$$

We can bound the term on the right above by $\|f\|_{L^{2}}\|u\|_{L^{2}}$ (from Schuraz' inequality). Using the same assumptrons/aryument in the notes, one can bound the left side below by $\frac{1}{c}\|u\|_{L^{2}}^{2}$ for some constant $c>0$. Thus we have $\frac{1}{c}\|u\|_{L^{2}}^{2} \leq\|f\|_{L^{2}}\|u\|_{L^{2}}$, from which the desired inequality follows.
3. (a) use method of integrating factors.
(b) Start with the hint. If 4 has a local minimum at x_{0}, then $u^{\prime}\left(x_{0}\right)=0$ and $u^{\prime \prime}\left(x_{0}\right)>0$. Use the $O D E$ to derive a contradiction.

