Getting Started with Proofs
A proof is a rigorous, logically sound, mathematical argument. It is the means by which we convince ourselves and others thant a mathematical statement is true.

Example Suppose we want to prove the following Statement :
"If n is an even integer, then n^{2} is also an even integer."

Before we even attempt to show this is true, we need to decide what our axioms (mathematical facts that we just agree are the without proof) what and ^our definitions are. For this particular setting, our axioms are the following:

1. There is a collection of numbers called "integers". They include numbers such as $0,1,2, \ldots$ and $-1,-2,-3, \ldots$ and nothing else.
2. The usual arithmetic operations (rules involving adding, subtracting, multiply ing, and dividing) integers are true.

For our definitorns, we need to know when it means precisely for an integer to be "even". We want this definition to include all of our familiar examples of even integers such as $0,2,4,6,8,10,12, \ldots$

$$
-2,-4,-6,-8,-10,-12, \ldots
$$

All of our examples can be written in the form $2 \cdot \mathrm{~K}$ where k is another integer, eg $2=2.1,10=2.5$,

$$
-12=2 \cdot(-6)
$$

Thus, we should make the following definition:

Definition An integer n is even if there is another integer k such that $n=2 k$.

Now that we have our axioms and definitions, let us return to and prove the statement we wanted to prove. Another word for a mathematical statement is proposition, theorem, or lemma.

Proposition: "If n is an even integer, then n^{2} is also an even integer."
proof 1 (version for teaching purposes).

We always start with our assumptions.

Step 1. Lew n be an even integer.
Now we string together any relevant definitions and axioms in a logical manner until we reach the desired conclusion: " n " is an even integer".

Step 2. Then $n=2 k$ for some integer k (definition of "even").

Step 3. Thus $n^{2}=(2 k)^{2}=4 k^{2}=2\left(2 k^{2}\right)$.

$$
\uparrow \uparrow \uparrow
$$

(Step 2) axioms of arithmetic for integers

Step 4. Since k is an integer, $2 k^{2}$ is an integer (follows from axioms of arithmetic for
integers)
Step 5. Thus, from step 3 and 4, we have
then $n^{2}=2 \cdot \underbrace{2 k^{2}}$
\uparrow
Step 3 \uparrow
Step 3 is an integer by step 4
Conclusion: By the definition of being an even integer, step 5 shows that n^{2} is an even integer.
symbol to denote
the end of the proof.

We have successfully written a proof. This example illustrates the basic layout of a mathematical proof. We describe it more generally below.

Structure of a poor:
Proposition: Some assumptions imply some conclusions.
denotes
the statement to be proved
proof.
denotes the start of a proof

A ssumptions

Logical chain of $\left.\begin{array}{l}\text { axioms } / \text { definitions } 1 \\ \text { theorems }\end{array}\right\}$ middle other theorems
connecting the assumptions to the conclusions.

Conclusions. Z end
\uparrow denotes end of proof

As an exercise, go bale through the proof 1 in the example and identify which pats or the proof fit into the general structure given above.

The way thant proof I was written was to clearly illustrate the basic layout of a proof. In practice, mort proofs do nor spell out as many details, nor do they label steps (unless the proof is really long and complicated). Here is how a move experienced mathematician would rewrite proof 1 .

Proposition: If n is an even integer, then n^{2} is an even integer.
proof. Suppose n is an even integer. Then $n=2 k$ for some integer k. Therefore, $n^{2}=(2 k)^{2}=4 k^{2}=2 \cdot\left(2 k^{2}\right)$. Since $2 k^{2}$ is
an integer, we conclude that n^{2} is even.

Notice that this proof is shorter, does not state when it is invoking an axiom or definition, is written in complete sentences in paragraph format, and does rot label its steps.

There is no universal or definitive ser of rules on what makes a proof good or bad. The following list includes some things then most would agree then a good proof should possess:

1. Every step must be true. This is non-negotiable. Using one false step in a prove no longer makes it valid.
2. Assumptions and conclusions should be clearly stated.
3. Complete, grammatically correct sentences must be used. This is also a non-negotiable.
4. All logic must be sound. It is not enough to write a bunch of true sentences. These should be logically related to one another and should connect the assumptions to the conclusions.

Example:
Good - suppose it is raining outside. Then it is wet.

Bad - suppose all cats are mammals. Then the sun is a star. Therefore, blue is a color. In conclusion, the earth is a planet.
5. There should be no leaps in logic. Even if it is possible to shaw ane statement follows from another, if too many intermediate steps are left out, then the argument is hard to follow and not very convincing. In other words, dun't write too little.
6. At the same time, one should not spell art
every lithe detail, nor mention every time an axiom or defintorn is used, nor give too wordy of explanations. In other words, don't write too much.

There are many more, but this should give a reasonable guideline to follow when writing proofs. Like any skill, proot-writing is best learned by practicing. One should just start writing proofs, and then get them critiqued by someone more experienced. This will lead to the most improvement over time.

