HeW 3 Hints

1. For a swarth function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, its k th order Taylor expansion near $x \in \mathbb{R}^{n}$ is given by

$$
u(x+h)=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha| \leq k}} \frac{h^{\alpha}}{\alpha!} D^{\alpha} u(x)+O\left(|h|_{\infty}^{k+1}\right)
$$

for any $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}^{n}$. The sum is over all multi-indives

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \text { with each } \alpha_{i} \in \mathbb{N}:=\{0,1,2, \ldots\}
$$

such that the order of the index $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n} \leq k$.
For a vector $h=\left(h_{1}, \ldots, h_{n}\right) \in \mathbb{R}^{h}$ and a maltiindex $\alpha \in \mathbb{N}^{n}, \quad h^{\alpha}==h_{1}^{\alpha_{1}} h_{2}^{\alpha_{2}} \cdots h_{n}^{\alpha_{n}} \in \mathbb{R}$.

For a smooth function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a multi-index $\alpha \in \mathbb{N}^{n}$, and a point $x \in \mathbb{R}^{n}$, the α mixed partial derivative of u at x is

$$
D^{\alpha} u(x)=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \cdots \frac{\partial^{\alpha_{n}}}{\partial x_{n}^{\alpha_{n}}} u(x) .
$$

For a venter $h \in \mathbb{R}^{n}, \quad|h|_{\infty}=\max \left\{\left|h_{1}\right|, \ldots,\left|h_{n}\right|\right\}$. For a multi-index $\alpha \in \mathbb{N}^{n}, \quad \alpha!:=\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!$

As an example, for $n=1, k=3$, we have

$$
u(x+h)=u(x)+h u^{\prime}(x)+\frac{h^{2}}{2} u^{\prime \prime}(x)+\frac{h^{3}}{3!} u^{\prime \prime \prime}(x)+o\left(h^{4}\right)
$$

for any $h \in \mathbb{R}^{n}$.

For $n=2, \quad k=5, \quad x=\left(x_{1}, x_{2}\right), \quad h=\left(h_{1}, h_{2}\right)$, we have

$$
\begin{aligned}
& u\left(x_{1}, h_{1}, x_{2}+h_{2}\right)= u\left(x_{1}, x_{2}\right)+h_{1} \frac{\partial}{\partial x_{1}} u\left(x_{1}, x_{2}\right)+h_{2} \frac{\partial}{\partial x_{2}} u\left(x_{1}, x_{2}\right)+ \\
& \frac{h_{1}{ }^{2}}{2} \frac{\partial^{2}}{\partial x_{1}{ }^{2}} u\left(x_{1}, x_{2}\right)+h_{1} h_{2} \frac{\partial^{2}}{\partial x_{1} \partial x_{2}} u\left(x_{1}, x_{2}\right)+ \\
& \frac{h_{2}^{2}}{2} \frac{\partial^{2}}{\partial x_{2}^{2}} u\left(x_{1}, x_{2}\right)+ \\
& \frac{h_{1}^{3}}{3!} \frac{\partial^{3}}{\partial x_{1}^{3}} u\left(x_{1}, x_{2}\right)+\frac{h_{1}^{2} h_{2}}{2} \frac{\partial^{3}}{\partial x_{1}{ }^{2} \partial x_{2}} u\left(x_{1}, x_{2}\right)+\frac{h_{1} h_{2}^{2}}{2} \frac{\partial^{3}}{\partial x_{1} \partial x_{2}^{2}} u\left(x_{1}, x_{2}\right) \\
&+\frac{h_{1}^{3}}{3!} \frac{\partial^{3}}{\partial x_{2}^{3}} u\left(x_{1}, x_{2}\right)+\frac{h_{1}^{4}}{4!} \frac{\partial^{4}}{\partial x_{1}^{4}} u\left(x_{11} x_{2}\right)+ \\
& \frac{h_{1}^{3} h_{2}}{3!} \frac{\partial^{4}}{\partial x_{1}^{3} \partial x_{2}} u\left(x_{1}, x_{2}\right)+\frac{h_{1}^{2} h_{2}^{2}}{2 \cdot 2} \frac{\partial^{4}}{\partial x_{1}^{2} \partial x_{2}^{2}} u\left(x_{1}, x_{2}\right)+ \\
& \frac{h_{1} h 2_{2}^{3}}{3!} \frac{\partial^{4}}{\partial x_{1} \partial x_{2}^{3}} u\left(x_{1}, x_{2}\right)+\frac{h_{2}^{4}}{4!} \frac{\partial^{4}}{\partial x_{2}^{4}} u\left(x_{1}, x_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{h_{1}^{5}}{5!} \frac{\partial^{5}}{\partial x_{1}^{5}} u\left(x_{1}, x_{2}\right)+\frac{h_{1}^{4} h_{2}}{4!} \frac{\partial^{5}}{\partial x_{1}^{4} \partial x_{2}} u\left(x_{1}, x_{2}\right)+ \\
& \frac{h_{1}^{3} h_{2}^{2}}{3!\cdot 2} \frac{\partial^{5}}{\partial x_{1}^{3} \partial x_{2}^{2}} u\left(x_{1}, x_{2}\right)+\frac{h_{1}^{2} h_{2}^{3}}{2 \cdot 3!} \frac{\partial^{5}}{\partial x_{1}^{2} \partial x_{2}^{3}} u\left(x_{1}, x_{2}\right)+ \\
& \frac{h_{1} h_{2}^{4}}{4!} \frac{\partial^{5}}{\partial x_{1} \partial x_{2}^{4}} u\left(x_{1}, x_{2}\right)+\frac{h_{2}^{5}}{5!} \frac{\partial^{5}}{\partial x_{2}^{5}} u\left(x_{1}, x_{2}\right)+O\left(\max \left\{h_{1}^{6}, h_{2}^{6}\right\}\right) .
\end{aligned}
$$

2. Your answer should of the form:

Find $u \in V$ such there

$$
\begin{aligned}
& c_{1} u^{\prime \prime}+c_{2} u^{\prime}+c_{3} u=f \text { on }(0,1) \\
& \alpha_{1} u(0)+\alpha_{2} u^{\prime}(0)=0 \\
& \beta_{1} u(1)+\beta_{2} u^{\prime}(1)=0
\end{aligned}
$$

V is some space of functions on $[0,1]$, and $C_{1}, C_{2}, C_{3}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ are constants. It is Your job to find what $v, c_{1}, c_{2}, c_{3}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ should be,
3. Your answer should be of the form:

Find $u \in V$ such that

$$
A(u, v)=\int_{0}^{1} f v \quad \text { for all }
$$

$V t V$, where V is a space of functions on [0,1] and $A(u, v)$ is some expression involving integrals of terms involving $u, v, u^{\prime}, v^{\prime}$, and r. It is your job to find A and V.
4. Your answer should be of the form:

Find $u \in V$ so $B(u, v)=\int_{\Omega} f v+\int_{\Gamma} g v$
for all $v \in V$, where
$B(u, v)$ is some expression involving integrals of terms involving $A, \nabla u, \nabla v, u, v$, and γ.

Some Notation / Results from vector Calualus:

Given $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient of u
$\nabla u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is defined by

$$
\nabla u(x)=\left(\frac{\partial}{\partial x_{1}} u(x), \cdots, \frac{\partial}{\partial x_{n}} u(x)\right)
$$

Given $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ where component functions are $V=\left(V_{1}, \ldots, V_{n}\right)$, the divergence of $\quad v \quad \nabla \cdot v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given by $\quad \nabla \cdot v(x)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} v_{i}(x)$ Given $\quad u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, their dot product is $u \cdot v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $(u \cdot v)(x)=u(x) \cdot v(x)=\sum_{i=1}^{n} u_{i}(x) v_{i}(x)$

Product Rule
If $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then

$$
\begin{aligned}
& \nabla \cdot(\varphi v)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\varphi v_{i}\right)=\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{i}} \varphi\right) v_{i}+\sum_{i=1}^{n} u \frac{\partial}{\partial x_{i}} v_{i} \\
& \longrightarrow \nabla \cdot(\varphi v)=(\nabla \varphi) \cdot v+\varphi(\nabla \cdot v)
\end{aligned}
$$

In coordinates:

$$
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(\varphi v_{i}\right)=\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{i}} \varphi\right) v_{i}+\varphi \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} v_{i}
$$

The Divergence Theorem
Given $\quad v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $\Omega \subset \mathbb{R}^{n}$ with boundary Γ and outward unit normal $n: \Gamma \rightarrow \mathbb{R}^{n}$

$$
\int_{\Omega} \nabla \cdot v=\int_{\Gamma} v \cdot n \quad \begin{aligned}
& \text { In coordinates: } \\
& \int_{\Omega} \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} v_{i}=\int_{\Gamma} \sum_{i=1}^{n} v_{i} n_{i}
\end{aligned}
$$

The Divergence Theorem + Produr Rube give us integration by parts in \mathbb{R}^{n} :

Given $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad v: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,
$\Omega \subset \mathbb{R}^{n} w /$ boundary Γ and outward unit normal n,

$$
\int_{\Omega} \nabla \cdot(\varphi v)=\int_{\substack{\text { product }}} \nabla \varphi \cdot v+\int_{\Omega} \varphi(\nabla \cdot v) \quad \text { and }
$$

$$
\begin{gathered}
\int_{\Omega} \nabla \cdot(\varphi v)=\int_{\Gamma} \varphi v \cdot n, s o d, \quad \text { divergence },
\end{gathered}
$$

$$
\int_{\Omega} \varphi \nabla \cdot v=\int_{\Gamma} \varphi v \cdot n-\int_{\Omega} \nabla \varphi \cdot v
$$

Integration by parts in $\mathbb{R}^{n} w$ scalar function φ and vector

You can rewrite the PDE as function V.

$$
\left\lvert\, \begin{gathered}
-\nabla \cdot(A \nabla u)+\gamma u=f \text { on } \Omega \\
(A \nabla u) \cdot n=g \text { on } \Gamma .
\end{gathered}\right.
$$

