HW 4 Hints
1. Your answer should be of the form:
Find
$$U \in V$$
 such that
 $-(\kappa u')' + q U = f$ on (0,1),
Boundary undition at $x=0$,
Boundary and it ion at $x=1$.

2. Continuity: Show there is a
$$C_1$$
 st finall
of a
 $u, u, u,$
 $|a(u, u)| \leq C_1 \int \left(|\nabla u|^2 + |u|^2 \right) \int \int \left(|\nabla u|^2 + |u|^2 \right) \int_{\mathcal{R}} \left(|\nabla u|^2 + |u$

Ellipticity: Show ZC, 20 88 for all u,

$$Q(u,u) \geq C_2 \int (|\nabla u|^2 + |u|^2)$$

Continuity of l: show $\exists C_3$ st for all φ , $|l(\psi)| \leq C_3 \int_{\Omega} |\psi|^{2^1}$

The following facts may be useful:
() For any F

$$\left| \int_{R} F \right| \leq \int IFI$$

$$\left| \int_{R} F \right| \leq \int IFI$$
() For any F₁, F₂

$$IF_{1} + F_{2}I \leq IF_{1}I + IF_{2}I$$
() For any U, U

$$\left| \nabla U \cdot \nabla U \right| \leq I\nabla U | I \nabla U |$$
() For any C, F

$$\left| CFI = ICIIFI$$
() There is a constant C_R >0 such there, for all u e Hole),

$$\int_{R} (\nabla U)^{2} = C_{R} \int_{R} IUI^{2}$$
() For any C₁ F

$$\int_{R} ICIIFI \leq \sup IC(X)I \int IFI$$

$$X \in R$$

$$(f) \quad \text{For any} \quad X_{1}, X_{2}, Y_{1}, Y_{2} \\ | X_{1}Y_{1} + X_{2}Y_{2}| \leq \sqrt{X_{1}^{2} + X_{2}^{2}} \sqrt{Y_{1}^{2} + Y_{2}^{2}}$$

8 For any
$$F, G$$
,
 $\int |F||G| \leq \sqrt{\int |F|^2} \sqrt{\int |G|^2}$
 r

3. A real inner product on a real vector space V is
a map
$$\langle \cdot, \cdot \rangle : V \times V \rightarrow \mathbb{R}$$
 such that
(1) $\langle cu_1 + u_2, v \rangle = c \langle u_1, v \rangle + \langle u_2, v \rangle$ for all $ce \mathbb{R}$, $u_1, u_2, v \in V$
(2) $\langle u_1, v \rangle = \langle v, u \rangle$ for all $u, v \in V$
(3) $\langle u_1, u \rangle \ge 0$ for all $u \in V$
(4) If $u \ne 0$, then $\langle u, u \rangle > 0$.
Real inner products also have the following properties:
(1) $\langle u_1, cv_1 + v_2 \gamma = c \langle u_1, v_1 \rangle + \langle u_1, v_2 \rangle$ for all $c \in \mathbb{R}$,
 $u_1, v_1, v_2 \in V$

(2) (0,v) = 0 = (u,0) for all $u,v \in V$

For (b), consider the quadratic polynomial

$$p(t) := \langle uttv, uttv \rangle = ||u||^2 + 2t \langle u_1v \rangle + 2^2 ||v||^2$$
.
We have $p(t) \ge 0$ for all t (ung \ge)
Use (alc I facts to find where the minimum of
 p is at . Suppose it is at to. Compute
 $p(t_0)$, which satisfies $p(t_0) \ge 0$, and then
(onclude.

For (c) and (d), recall that the Ho inner product is

$$(u_1 \psi_{\gamma_{H_{\alpha}}}) = \int (\nabla u \cdot \nabla \psi + u \psi)$$
. You should use
r

the results of question 2.