HO 4 Hints

1. Your answer should be of the form:

Find $u \in V$ such that

$$
-\left(k u^{\prime}\right)^{\prime}+q u=f \text { on }(0,1)
$$

Boundary condition at $x=0$,
Boundary condition at $x=1$.

Find V, q, and the boundary conditions.
For of, consider a piereuise-defined function.
2. Continuity: Show there is a C_{1} st for all of a u, φ,

$$
|a(u, \varphi)| \leq C_{\cdot} \sqrt{\int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right)} \sqrt{\int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right)}
$$

Ellipticity: Show $\exists C_{2}>0$ st for all u,

$$
a(u, u) \geq c_{2} \int_{\Omega}\left(|\nabla u|^{2}+|u|^{2}\right)
$$

Continuity of l : show $\exists C_{3}$ st for all φ,

$$
|\ell(\varphi)| \leq C_{3} \sqrt{\int_{\Omega}|\varphi|^{2}}
$$

The following facts may be useful:
(1) For any F

$$
\left|\int_{\Omega} F\right| \leq \int_{\Omega}|F|
$$

(2) For any F_{1}, F_{2}

$$
\left|F_{1}+F_{2}\right| \leq\left|F_{1}\right|+\left|F_{2}\right|
$$

(3) For any u, u

$$
|\nabla u \cdot \nabla \varphi| \leq|\nabla u||\nabla \varphi|
$$

(4) For any c, F

$$
|C F|=|C||F|
$$

(5) There is a constant $C_{\Omega}>0$ sven thant, for all $u \in H_{0}^{\prime}(\Omega)$,

$$
\int_{\Omega}|\nabla u|^{2} \geq C_{\Omega} \int_{\Omega}|u|^{2}
$$

(6) For any c, F

$$
\int_{\Omega}|c||F| \leq \sup _{x \in \Omega}|c(x)|\left|\int_{\Omega}\right| F \mid
$$

(7) For any $x_{1}, x_{2}, y_{1}, y_{2}$

$$
\left|x_{1} y_{1}+x_{2} y_{2}\right| \leq \sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}
$$

(8) For any F, G,

$$
\int_{\Omega}|F||G| \leq \sqrt{\int_{\Omega}|F|^{2}} \sqrt{\int_{\Omega}|G|^{2}}
$$

3. A real inner product on a real veusur space V is a map $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ such that
(1) $\left\langle\left\langle u_{1}+u_{2}, v\right\rangle=c\left\langle u_{1}, v\right\rangle+\left\langle u_{2}, v\right\rangle\right.$ for all $c \in \mathbb{R}, u_{1}, u_{2}, v \in v$
(2) $\langle u, v\rangle=\langle v, u\rangle$ for all $u, v \in v$
(3) $\langle u, u\rangle \geq 0$ for all $u \in V$
(4) If $u \neq 0$, then $\langle u, u\rangle\rangle 0$.

Real inner products also have the following properties:
(1) $\left\langle u, c v_{1}+v_{2}\right\rangle=c\left\langle u, v_{1}\right\rangle+\left\langle u, v_{2}\right\rangle$ for all $c \in \mathbb{R}$,

$$
u_{1} v_{1}, v_{2} \in V
$$

(2) $\langle 0, v\rangle=0=\langle u, 0\rangle$ for all $u, v \in V$

For (a), compute $\langle u+v, u+v\rangle+\langle u-v, u-v\rangle$

For (b), consider the quadratic polynomial

$$
p(t):=\langle u+t v, u+t v\rangle=\|u\|^{2}+2 t\langle u, v\rangle+t^{2}\|v\|^{2} .
$$

We have $p(t) \geq 0$ for all t (wing?)
Use calc I facts to find where the minimum of P is at. Suppose it is at to. Compare $p\left(t_{0}\right)$, which satisfies $p\left(t_{0}\right) \geq 0$, and then conclude.

For (c) and (d), recall that the H_{0}^{\prime} inner product is $\langle u, \varphi\rangle_{H_{0}^{\prime}(\Omega)}=\int_{\Omega}(\nabla u \cdot \nabla \varphi+u \varphi)$. You should use the results of question 2.

