la. We apply the following strategy to the problem:

1. Suppose we find a sequence $u_{n} \in C_{0}^{1}(-1,1)$.

Then since $u(-1)=u(1)=0$ and $u_{n}(-1)=u_{n}(1)=0$, we have $u-u_{n} \in H_{0}^{\prime}(-1,1)$. Poincare' then implies that then is a constant $C>0$ such then

$$
\begin{aligned}
\left\|u-u_{n}\right\|_{H^{\prime}}^{2} & =\int_{-1}^{1}\left(u-u_{n}\right)^{2}+\int_{-1}^{1}\left(u^{\prime}-u_{n}^{\prime}\right)^{2} \\
& \leq(c+1) \int_{-1}^{1}\left(u^{\prime}-u_{n}^{\prime}\right)^{2}
\end{aligned}
$$

Thus $\left\|u-u_{n}\right\|_{H^{\prime}} \leq \sqrt{C+1}\left\|u^{\prime}-u_{n}^{\prime}\right\|_{L^{2}}$, so
we only need to find a sequence $u_{n} \in C_{0}^{\prime}(-1,1)$ for which $\left\|u^{\prime}-u_{n}^{\prime}\right\|_{L^{2}} \rightarrow 0$ as $n \rightarrow \infty$.
2. Now suppose we find a sequence $V_{n} \in C_{0}(-1,1)$ (only continuous, nut necessarily differentiable) such that $\left\|u^{\prime}-v_{n}\right\|_{L^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Then if we let $u_{n}(x)=\int_{-1}^{x} v_{n}(s) d s$, we have $u_{n} \in C_{0}^{1}(-1,1)$,
$u_{n}^{\prime}=v_{n}$, and, by (1.), $\left\|u-u_{n}\right\|_{H^{\prime}} \rightarrow 0$ as
$n \rightarrow \infty$. Thus we only need to find a sequence $V_{n} \in C_{0}(-1,1)$ of continuous functions thant approximates u^{\prime} in the sense thar $\left\|u^{\prime}-v_{n}\right\|_{L^{2}} \rightarrow 0$ as $n \rightarrow \infty$.
3. We can reduce the problem further using the following Theorem:

The Duminared Convergence Theorem for $L^{2}(-1,1)$:
Let $\left(f_{n}\right)$ be a sequence of functions in $L^{2}(-1,1)$, and let $f \in L^{2}(-1,1)$. If
(1) $f_{n}(x) \rightarrow f(x)$ for almost every $x \in(-1,1)$
(2) There is a function $g \in L^{2}(-1,1)$ for which $\left|f_{n}(x)\right| \leq g(x)$ for almost every $x \in(-1,1)$

Then $\quad\left\|f_{n}-f\right\|_{L^{2}} \rightarrow 0 \quad$ as $\quad n \rightarrow \infty$.

If we apply this theorem to $f=u^{\prime}, g=\left|u^{\prime}\right|$, then we only need to find a sequence $\left(V_{n}\right) \subset C_{0}(-1,1)$ for which

1. $\left|V_{n}(x)\right| \leq\left|u^{\prime}(x)\right|$ for almost every $x \in(-1,1)$
2. $V_{n}(x) \rightarrow U^{\prime}(x)$ for almost ency $x \in(-1,1)$.

If we find such $a\left(V_{n}\right)$, then the theorem above tells us $\left\|v_{n}-U^{\prime}\right\|_{L^{2}} \rightarrow 0$ as $n \rightarrow \infty$, and our remarks in (1.), (2.) tell us that the sequence $\left(u_{n}\right)$ with $u_{n}(x)=\int_{-1}^{x} v_{n}(t) d t$ belongs to $C_{0}^{1}(-1,1)$ and $\quad \| u_{n}-U U_{H^{\prime}} \rightarrow 0$ as $n \rightarrow \infty$.

To summarize: All you have to do is find a sequence $\left(v_{n}\right)$ w) $v_{n} \in C_{0}(-1,1)$ and

1. $\left|v_{n}(x)\right| \leq\left|u^{\prime}(x)\right|$ for almost verey $x \in(-1,1)$
2. $\quad V_{n}(x) \rightarrow u^{\prime}(x)$ for almost every $x \in(-1,1)$
ib. Compute $\int_{-1}^{0}\left|u^{\prime}(x)\right| d x+\int_{0}^{1}\left|u^{\prime}(x)\right| d x$ and
use integuntron - by - pars on

$$
\int_{-1}^{0} u \varphi^{\prime}+\int_{0}^{1} u \varphi^{\prime}
$$

2a. $\|u\|_{H^{2}}$ should involve $u, u^{\prime}, u^{\prime \prime}$.

2b. No hints here. We've done these kinds of problems before.

2c. For boundedness, you need the following inequalin:
For any $u \in H^{2}(0,1)$, any $x_{0} \in[0,1]$,

$$
\left|u^{\prime}\left(x_{0}\right)\right| \leq \sqrt{2}\|u\|_{H^{2}} .
$$

proof:

$$
\begin{aligned}
& u^{\prime}\left(x_{0}\right)-u^{\prime}(x)=\int_{x}^{x_{0}} u^{\prime \prime}(t) d t \quad \xrightarrow{\text { (triangle inequaling) }} \\
& \left|u^{\prime}\left(x_{0}\right)\right| \leq\left|u^{\prime}(x)\right|+\int_{0}^{1}\left|u^{\prime \prime}(t)\right| d t \quad \xrightarrow{\int_{0}^{1} \cdot d x \text { auth sides) }} \\
& \left|u^{\prime}\left(x_{0}\right)\right| \leq \int_{0}^{1}\left|u^{\prime}(x)\right| \cdot 1 d x+\int_{0}^{1}\left|u^{\prime \prime}(t)\right| \cdot 1 d t \\
& \text { (cancly-Schurez) } \\
& \leq 1 \cdot \sqrt{\int_{0}^{1} u^{\prime}(x)^{2} d x}+1 \cdot \sqrt{\int_{0}^{1} u^{\prime \prime}(t)^{2} d t}
\end{aligned}
$$

(Cachly-schnowz

\[

\]

For ellipticity, you need the following inequality:
For any $u \in H^{2}(0,1)$, any $x_{0} \in[0,1]$

$$
\int_{0}^{1}\left(u^{\prime}\right)^{2} d x \leq 2 u^{\prime}\left(x_{0}\right)^{2}+2 \int_{0}^{1}\left(u^{\prime \prime}\right)^{2} d x
$$

proof.

$$
u^{\prime}(x)-u^{\prime}\left(x_{0}\right)=\int_{x_{0}}^{x} u^{\prime \prime}(t) d t \quad \rightarrow
$$

$$
u^{\prime}(x)=u^{\prime}\left(x_{0}\right)+\int_{x_{0}}^{x} u^{\prime \prime}(t) d v \quad \longrightarrow
$$

$$
\left|u^{\prime}(x)\right| \leq \int_{0}^{\text {triangle }}\left|u^{\prime}\left(x_{0}\right)\right|+u^{\prime \prime}(t) \mid d t
$$

$$
\begin{gathered}
\left.\begin{array}{c}
\text { Canity-scharz } \\
\leq\left|u^{\prime}\left(x_{0}\right)\right|+\sqrt{\int_{0}^{1}\left(u^{\prime \prime}\right)^{2} d t} \\
u^{\prime}(x)^{2} \\
\\
\leq 2 u^{\prime}\left(x_{0}\right)^{2}+2 \int_{0}^{1} u^{\prime \prime}(t)^{2} d t
\end{array}\right)
\end{gathered}
$$

$$
\int_{0}^{1} u^{\prime}(x)^{2} d x \leq 2 u^{\prime}\left(x_{0}\right)^{2}+2 \int_{0}^{1} u^{\prime \prime}(t)^{2} d t .
$$

2d. Use the hilt for boundedness from 2c.

Le. Lax-Milgram for existence. Prove uniqueness directly for full credit: If $u_{1}, u_{2} \in V$ are two solutions to the weak problem, use ellipticity of a to argue thant
$u_{1}=u_{2}$. As a further hint,

$$
\begin{aligned}
a\left(u_{1}, v\right) & =\ell(v) \quad \text { fer all } v \in v \quad \text { (bilinemiz } a) \\
a\left(u_{2}, v\right) & =\ell(v) \\
a\left(u_{1}-u_{2}, v\right) & =a\left(u_{1}, v\right)-a\left(u_{2}, v\right)=l(v)-l(v)=0
\end{aligned}
$$

for all $v \in V$.

