- la. We apply the following strategy to the problem:
 - 1. Suppose we find a segnence un E Co'(-1,1).
 - Then since u(-1) = u(1) = 0 and $u_n(-1) = u_n(1) = 0$, we have $u - u_n \in H_0'(-1, 1)$. Poincave' then implies that from is a constant C70 such that

$$\|u-u_n\|_{H'}^2 = \int_{-1}^{1} (u-u_n)^2 + \int_{-1}^{1} (u'-u_n')^2 + \int_{-$$

Thus $\||u - u_n||_{H^1} \leq \sqrt{C + 1} \||u' - u_n'||_{L^2}$, so

- we only need to find a sequence $u_n \in C_o^{\prime}(-1,1)$ for which $\|u' - U'_n\|_{L^2} \rightarrow 0$ as $n \rightarrow \infty$.
- 2. Now suppose we find a sequence $V_n \in C_o(-1,1)$ (only continuous, not necessarily differentiable) such that $\||u' - V_n\||_{L^2} \rightarrow 0$ as $n \rightarrow \infty$. Then if we let $u_n(x) = \int_{-1}^{x} V_n(s) ds$, we have $u_n \in C_o(-1,1)$,

$$U'_{n} = V_{n}$$
, and, by (1.), $\| u - u_{n} \|_{H^{1}} \rightarrow 0$ as
 $n \rightarrow \infty$. Thus we only need to find a sequence
 $V_{n} \in C_{0}(-1,1)$ of continuous functions that approximates
 u' in the sense that $\| u' - v_{n} \|_{L^{2}} \rightarrow 0$ as $n \rightarrow \infty$.

3. We can reduce the problem further using the following theorem :

The Dominated Convergence Theorem for
$$L^{2}(-1,1)$$
:
Let (f_{n}) be a sequence of functions in $L^{2}(-1,1)$,
and let $f \in L^{2}(-1,1)$. If
(1) $f_{n}(x) \rightarrow f(x)$ for almost every $x \in (-1,1)$
(2) There is a function $g \in L^{2}(-1,1)$ for
which $|f_{n}(x)| \leq g(x)$ for almost every
 $x \in (-1,1)$

Then $\|f_n - f\|_{L^2} \rightarrow 0$ as $n \rightarrow \infty$.

If we apply this theorem to
$$f = u'$$
, $g = |u'|$,
then we only need to find a sequence
 $(V_n) \subset C_0(-1,1)$ for which

1.
$$|Vn(x)| \leq |u'(x)|$$
 for almost every $x \in (-1,1)$
2. $Vn(x) \rightarrow U'(x)$ for almost every $x \in (-1,1)$.

If we find such
$$\alpha$$
 (V_n) , then the theorem
above fields us $\|V_n - u'\|_{L^2} \rightarrow 0$ as $n \rightarrow \infty$,
and our remarks in (1.), (2.) tell us that the
sequence (4n) with $u_n(x) = \int_{-1}^{x} v_n(t) dt$ belongs to
 $C_o'(-1,1)$ and $\|u_n - u\|_{H^1} \rightarrow 0$ as $n \rightarrow \infty$.

To summarize : All you have to do is find
a sequence
$$(Vn)$$
 w/ $Vn \in Co(-1,1)$ and
1. $|Vn(x)| \leq |u'(x)|$ for almost every $x \in (-1,1)$
2. $Vn(x) \rightarrow u'(x)$ for almost every $x \in (-1,1)$

110. Compute
$$\int_{-1}^{0} |u^{1}(x)| dx + \int_{0}^{1} |u^{1}(x)| dx$$
 and
Use integration $-bg - points$ on
 $\int_{-1}^{0} u \, q' + \int_{0}^{1} u \, q'$.
2.6. No hints here. We've done thuse kinds of
problems before.
2.c. For boundedness, you need the following inequality:
 $\left[For \quad any \quad u \in H^{2}(0,1), \quad any \quad x_{0} \in [0,1], \\ [u^{1}(x_{0})] \leq \sqrt{2^{1}} ||u|| H^{2}.$
proof:
 $u^{1}(x_{0}) - u^{1}(x) = \int_{x}^{x_{0}} u^{1}(t) dt \qquad (friangle inequality) \\ [u^{1}(x_{0})] \leq |u^{1}(x)| + \int_{0}^{1} |u^{1}(t)| dt \qquad (\int_{0}^{1} dx \text{ both side:}) \\ [u^{1}(x_{0})] \leq \int_{0}^{0} |u^{1}(x)| \cdot 1 \, dx + \int_{0}^{1} |u^{1}(t)| \cdot 1 \, dt$

)

$$((audy-schuwz) ((audy-schuwz) (u')^2 + (u'')^2 \leq \sqrt{2} ||u||_{H^2}$$

$$(audy-schuwz) (u')^2 + (u'')^2 \leq \sqrt{2} ||u||_{H^2}$$

$$(defin or ||\cdot||_{H^2}]$$

For ellipticity, you need the following inequality:
For any
$$u \in H^2(0,1)$$
, any $x \circ \in [0,1]$

$$\int_{0}^{1} (u')^2 dx \leq 2 u'(x \circ)^2 + 2 \int_{0}^{1} (u'')^2 dx$$

 $p \operatorname{roof} .$ $u'(x) - u'(x_0) = \int_{x_0}^{x} u''(t) dt \rightarrow$

$$u'(x) = u'(x_0) + \int_{x_0}^{x} u''(t) dt \longrightarrow$$

triangle

$$|u'(x)| \leq |u'(x_0)| + \int |u''(t)| dt$$

$$(aut - 5chur2 - (u'(x_0)) + \sqrt{\int_0^1 (u'')^2 dt} \longrightarrow$$

$$\int (a+b)^2 \leq 2a^2 + 2b^2$$

$$\int (a+b)^2 \leq 2a^2 + 2b^2$$

$$(\int dx but sides)$$

$$u'(x)^2 \leq 2u'(x_0)^2 + 2\int_0^1 u''(t)^2 dt$$

$$\int_{0}^{1} u'(x)^{2} dx \leq 2 u'(x_{0})^{2} + 2 \int_{0}^{1} u''(t)^{2} dt .$$

22. Use the hint for boundedness from 2c.

Le. Lax-Milgram for existence. Prove uniqueness
directly for full credit: If
$$U_{i}, U_{i} \in V$$
 are two solutions
to the weak problem, use ellipticity of
a to angue that
 $U_{i} = U_{2}$. As a further hint,
 $a(u_{i}, v) = k(v)$ for all ve V (bilineary a)
 $a(u_{2}, v) = k(v)$

$$a(u_{1}-u_{2},v) = a(u_{1},v) - a(u_{2},v) = \ell(v) - \ell(v) = 0$$

for all $v \in V$.