Midterm II Info

Question I.

We have covered the following topics:

- A simple Finite Element method, examples in 1D and 2D
- Finite element spaces, unisolvence
- Implementational aspects (quadrature, assembly)
- a priori error analysis: Quasi optimality, interpolation estimates, the Bramble-Hilbert Lemma

Question II.

Answer the following questions:
a - Recall the definition of Sobolev spaces. What is a generalized derivative? What are the norms of the spaces $H^{1}(\Omega), H^{2}(\Omega), H_{0}^{1}(\Omega)$ and $L^{2}(\Omega)$ for $\Omega \subset \mathbb{R}^{2}$?
り - Also write out the semi norms $|\cdot|_{H^{1}(\Omega)},|\cdot|_{H^{2}(\Omega)}$.
C - What is the Lagrange nodal basis of P_{1} ?
λ - Explain in detail how the elliptic model problem, $-\Delta u=f,\left.u\right|_{\partial \Omega}=0$, on the unit square $\Omega=[0,1]^{2}$ can be approximated with linear (Lagrange) finite elements. How is the stiffness matrix A and the load vector F constructed?
$e \quad-$ Find unisolvent degrees of freedom for $P_{2}(T), P_{3}(T)$ and $P_{4}(T)$.
f - Give an example of a non-conforming, an H^{1}-conforming and an H^{2}-conforming finite f element.

9 - What is quasi-optimality (Céa's lemma); correspondingly when can you expect an optimality result to be true?
h - What is Galerkin orthogonality?
i - What is the statement of the Bramble-Hilbert lemma? Recall the interpolation estimate that we derived with the Bramble-Hilbert lemma on the unit simplex.
j - What is form (structural), shape, and size regularity?

Question III.

Show that the Argyrus element defined on a triangle T,

$$
V(T)=P_{5}(T), \quad p\left(a_{i}\right), \nabla p\left(a_{i}\right), \nabla^{2} p\left(a_{i}\right), \partial_{n} p\left(m_{i}\right),
$$

is unisolvent. Here, a_{i} denotes vertices, and m_{i} midpoints on edges. Show that the Argyrus element is H^{2}-conforming.

Question IV.

Let $\Omega \subset \mathbb{R}^{2}$ be a bounded, convex polygonal domain and let \mathscr{T}_{b} be a triangulation of Ω. Let V_{b} be the linear finite element space subject to \mathscr{T}_{h}. We consider the elliptic problem

$$
-\Delta u+\gamma(x) u=f(x) \quad \text { in } \Omega, \quad u(x)=0 \quad \text { for } x \in \partial \Omega
$$

(a) Formulate the corresponding Galerkin problems (G) with solution u and $\left(\mathrm{G}_{b}\right)$ with solution u_{b}. What is the correct function space V for the above elliptic problem?
(b) State assumptions on the data $\left(\mathscr{T}_{h}, \gamma, f\right)$ under which (i) the problems $(G),\left(G_{b}\right)$ are wellposed, (ii) the solution $u \in H^{2}$, and (iii) the following a priori error estimate holds true:

$$
\left\|u-u_{b}\right\|_{L^{2}(\Omega)}+b\left|u-u_{b}\right|_{H^{1}(\Omega)} \leq C b^{2}|u|_{H^{2}(\Omega)}
$$

(c) Prove the a priori estimate given in (b)! More precisely, show that

$$
\left|u-u_{b}\right|_{H^{1}(\Omega)} \leq C b|u|_{H^{2}(\Omega)},
$$

(d) and with the help of the Aubin-Nitsche trick show that

$$
\left\|u-u_{b}\right\|_{L^{2}(\Omega)} \leq C b^{2}|u|_{H^{2}(\Omega)} .
$$

Question V.

Have a look at the following homework questions: Homework IV, Q2; Homework VI, Q1, Q2, Q3; Homework VII, Q1, Q2.

II
a. A function $u: \Omega \rightarrow \mathbb{R}$ has a generalized it partial derivative v if

$$
\int_{\Omega} u \partial_{i} \phi=-\int_{\Omega} v \phi
$$

for all $\phi: \Omega \rightarrow \mathbb{R}$ so \quad 1. $\partial_{i} \phi: \Omega \rightarrow \mathbb{R}$ exists
2. $\phi=0$ on $\partial \Omega$

$$
\begin{aligned}
& \|u\|_{H^{\prime}(\Omega)}=\left(\int_{\Omega}|\nabla u|^{2}+u^{2} d x\right)^{1 / 2} \\
& \|u\|_{H^{2}(\Omega)}=\left(\int_{\Omega} \sum_{i \leq j}\left(\partial_{x_{i}} \partial_{x_{j}} u\right)^{2}+|\nabla u|^{2}+u^{2} d x\right)^{1 / 2} \\
& \|u\|_{H_{0}^{\prime}}(\Omega)=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2} \\
& \|u\|_{L^{2}(\Omega)}=\left(\int_{\Omega} u^{2} d x\right)^{1 / 2}
\end{aligned}
$$

b.

$$
\begin{aligned}
& |u|_{H^{\prime}(\Omega)}=\left(\int_{\Omega}|\nabla u|^{2}\right)^{1 / 2} \\
& |u|_{H^{2}(\Omega)}=\left(\int_{\Omega} \sum_{i \leq j}\left(\partial_{i} \partial_{j} u\right)^{2} d x\right)^{1 / 2}
\end{aligned}
$$

C. For simplicity, suppose $\Omega \subset \mathbb{R}^{2}$ is a polygonal domain. Let \widehat{K} be the reference triangle. Suppose that we can construct a triangulation $T_{h}=\left\{K_{i}\right\}_{i=1, \ldots, N}$ of Ω where 1. Each K_{i} is a triangle given by an affine reference transformation

2. $\Omega<\bigcup_{i} K_{i}, 3$. Each $K_{i} \cap K_{j}=\phi$, w $K_{i} \cap K_{j}$ is a common
4. Each $K_{i} \subset \Omega$
edge: ki ki or a common vertex:

Let $\left\{v_{i}\right\}_{i=1, \ldots, N_{v}}$ denote the vertices of this triangulation, eg

$$
\left\{v_{i}\right\}_{i=1, \ldots, N}=\bigcup_{i}\left\{T_{i}(0,0), T_{i}(1,0), T_{i}(0,1)\right\}
$$

for P^{\prime}
Then the lagrange nodal basis a associated to the vertices $\left\{v_{i}\right\}_{i=1}, \ldots, N_{v}$ is the collection of functions $\left\{\phi_{i}\right\}_{i=1, \ldots, N_{v}}$ where

1. Foch $\phi_{i}: \Omega \rightarrow \mathbb{R}$ is continues
2. Each $\phi_{i} \circ T_{j}: \hat{K} \rightarrow \mathbb{R}$ is a degree ≤ 1 polynomial on \hat{K} (for all i, j)
3. Each $\phi_{i}\left(v_{j}\right)=\delta_{i j}$ for all i, j

$$
\begin{array}{r}
d . \quad-\Delta u=f \quad \text { on } \Omega \\
u=0 \quad \text { on } \quad d \Omega
\end{array}
$$

weak form: $\quad a(u, \phi)=\int_{\Omega} \nabla u \cdot \nabla \phi, \quad F(\phi)=\int_{\Omega} f \phi$

$$
V=H_{0}^{\prime}(\Omega)
$$

Find $u \in V$ so $a(u, \phi)=F(\phi) \quad \forall \quad \phi \in V$.
τ_{n} triangulatorn of Ω as above.

$$
\begin{aligned}
& V_{n}=\left\{\phi_{n} \in C^{0}(\Omega) \mid \phi_{n} \circ T_{i} \in P^{\prime}(\hat{k}) \forall i\right\} \cap\left\{\phi:\left.\phi\right|_{\partial \Omega}=0\right\} \\
& \text { Basis }=\left\{\phi_{i}\right\}_{i=1, \ldots, N_{v} \quad \text { Lagrange nodal basis }} \\
& \text { as }
\end{aligned}
$$ abuse

Discrete problem: Find $u_{n}=\sum_{i}{\underset{\sim}{i}}_{U_{i}} \phi_{i}$ st

$$
\sum_{i=1}^{\sum_{i}} a(\underbrace{\phi_{i}, \phi_{j}}) U_{i}=\underbrace{F\left(\phi_{j}\right)}_{F_{j}} \text { load venter } \text { for all } j=1, \ldots, N_{v}
$$

$A_{j} ;$ stiffness matrix

$$
u_{i}=0 \quad \forall \text { i st } \quad v_{i}=0 \text { on } \partial \Omega
$$

Each element K_{i} has venues $v_{i 1}, v_{i 2}, v_{i 3} \in\left\{v_{i}\right\}_{i=1, \ldots, N_{v}}$
This defines a local-to-globil enumeration

$$
I: \overbrace{\# \text { elements }}^{\{1, \ldots, N\}} \times\{1,2,3\} \rightarrow \underbrace{\left\{1, \ldots, N_{v}\right\}}_{\# \text { vertices }}
$$

Then $A=\sum_{k=1}^{N} \underbrace{A^{k}}_{\text {element matrix }}$

$$
\begin{array}{ll}
A_{i j}^{k}=\int_{K_{k}} \nabla \phi_{i} \cdot \nabla \phi_{j}=0 \text { if } v_{i} \notin\left\{v_{k, 1}, v_{k, 2}, v_{k, 3}\right\} \\
\text { or } \\
K_{k_{k}}^{v_{k, 3}} v_{v_{k, 2}}
\end{array}
$$

when $V_{i}, V_{j} \in\left\{V_{k_{i},} v_{k, 2}, V_{k, 3}\right\}$ ie $i, j \in\{I(k, 1), I(k, 2)$, $I(k, 3)\}$

$$
A_{I(k, l), I(k, m)}^{k}=\int_{K_{k}} \nabla \phi_{I(k, \ell)} \cdot \nabla \phi_{I(k, m)}
$$

The vertices are locally enumerated in such a win so that

1. $\quad T_{k}\left(\hat{v}_{i}\right)=v_{k, i}$,
2. $\phi_{I(k, i)} \circ T_{k}=\hat{\phi}_{i}$, where

$$
\begin{aligned}
\hat{\phi}_{i}: \hat{k} \rightarrow \mathbb{R} \quad \hat{\phi}_{1}\left(\hat{x}_{1}, \hat{x}_{2}\right) & =1-\hat{x}_{1}-\hat{x}_{2}, \nabla \hat{\phi}_{1}=(-1,1) \\
\hat{\phi}_{2}\left(\hat{x}_{1}, \hat{x}_{2}\right) & =\hat{x}_{1}, \nabla \hat{\phi}_{2}=(1,0) \\
\hat{\phi}_{3}\left(\hat{x}_{1}, \hat{x}_{2}\right) & =\hat{x}_{2} \quad \nabla \hat{\phi}_{3}=(0,1)
\end{aligned}
$$

4. JTu$=M_{k} ; \nabla \hat{\phi}_{i}=\nabla\left(\phi_{I(k, i)} \circ T_{k}\right)$

$$
\begin{aligned}
& =\left[\left(\nabla \phi_{I(k, i)}\right) \cdot T_{k}\right] J T_{k} \\
& =\left(\nabla \phi_{f(k, i)} \cdot T_{k}\right) M_{k}
\end{aligned}
$$

$$
\rightarrow\left(\nabla \hat{\phi}_{i}\right) M_{k}^{-1}=\nabla \phi_{I(k, i)} \cdot T_{k}
$$

Thus $\quad A_{I(k, l) I(k, m)}^{k}=\int_{k_{k}} \nabla \phi_{I(k, l)} \cdot \nabla \phi_{I(k, m)} d x$

$$
\begin{aligned}
x & =\xrightarrow{T_{k}(\hat{x})}=\int_{\hat{K}}\left(\nabla \phi_{I(k, e)} \circ T_{k}\right) \cdot\left(\nabla \phi_{I(k, m)} \cdot T_{k}\right)\left|\operatorname{der} J T_{k}\right| d \hat{x} \\
& =\int_{\hat{k}}(\underbrace{\left(\nabla \hat{\phi}_{l} M_{k}^{-1}\right) \cdot\left(\nabla \hat{\phi}_{m} M_{k}^{-1}\right)\left|\operatorname{det} M_{k}\right|}_{\text {constant }} d \hat{x}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\ell^{\int_{k} d \hat{x}=1 / 2} \\
=\left(\nabla \hat{\phi}_{l} M_{u}^{-1}\right) \cdot\left(\nabla \hat{\phi}_{m} M_{k}^{-1}\right) \frac{\left|\operatorname{der} M_{k}\right|}{2}
\end{array} \\
& \therefore \quad A_{i j}^{k}= \begin{cases}0, & ; \notin(I(k, 1), I(k, 2), I(k, 3)) \text { or } \\
j \notin(I(k, 1), I(k, 2), I(k, 3)) \\
\left(\nabla \hat{\phi}_{l} M_{k}^{-1}\right) \cdot\left(\nabla \hat{\phi}_{m} M_{k}^{-1}\right) \frac{\operatorname{det} M_{k} \mid}{2},\end{cases} \\
& \text { if } i=I(k, l) \text {, } \\
& \text { and } A=\sum_{k=1}^{N} A^{k} \text {. } \\
& j=I(k, m) \text {, } \\
& l, m \in\{1,2,3\}
\end{aligned}
$$

Similarly, $F=\sum_{k=1}^{N} F^{k}$
element load venter

$$
\begin{aligned}
& F_{j}^{u}=\int_{K_{k}} f \phi_{j}=\left\{\begin{array}{l}
0, j \notin\{I(k, 1), I(k, 2), I(k, 3)\} \\
\int_{k_{k}} f \phi_{I(k, l)}, j=I(k, l), l \in\{1,2,3\} .
\end{array}\right. \\
& \int_{K_{k}} f \psi_{I(k, l)} d x=\int_{\hat{k}} f_{0} T_{k} \phi_{I(k, l)} \circ T_{k} \underbrace{\operatorname{det} M_{k} \mid}_{\text {constant }} d \hat{x}
\end{aligned}
$$

$$
=\left|\operatorname{der} M_{k}\right| \int_{\hat{k}} f_{0} T_{k} \hat{\phi}_{l} d \hat{x}
$$

$$
\approx \underbrace{\frac{1 \operatorname{det} M_{k} \mid}{\frac{1}{2} \sum_{n=1}^{N_{q}} \omega_{n} f\left(T_{k}\left(\hat{x}_{n}\right)\right) \hat{\phi}_{l}\left(\hat{x}_{n}\right)}}_{\text {quadrature rule on } \hat{K}}
$$

$$
\omega_{1}=\omega_{2}=\omega_{3}=1 / 3
$$

so $\quad F=\sum_{k=1}^{N} F^{k}$

$$
F_{j}^{k}=\left\{\begin{array}{l}
0, j \notin\{I(k, 1), I(k, 2), I(k, 1)\} \\
\frac{\left|\operatorname{der} M_{k}\right|}{2} \sum_{n=1}^{N_{q}} f\left(T_{k}\left(\hat{x}_{n}\right)\right) \hat{\phi}_{l}\left(\hat{x}_{n}\right)+\text { quaduature } \\
\text { emar } \\
j=I(k, l), \\
\quad l \in\{1,2,3\}
\end{array}\right.
$$

Post-provess Bounday conclitruss in A, F and then solve for U
e. $\quad P_{2}(T)=\operatorname{span}\left\{1, x, y, x^{2}, x y, y^{2}\right\}$

idea: start w) p^{\prime} dols: $p\left(a_{i}\right)$ (3 dubs)
Now try to prove misoluence and add extra dots

$$
\begin{aligned}
& \text { as needed } \begin{array}{l}
p(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{2}+c_{5} x y+c_{6} y^{2} \\
p(0,0)=c_{1}=0 \rightarrow p(x, y)=c_{2} x+c_{3} y+c_{4} x^{2}+c_{5} x y+c_{6} y^{2} \\
\rightarrow p(1,0)=c_{2}+c_{4}=0 \rightarrow c_{2}=-c_{4} \\
\rightarrow p(x, y)=c_{2} x(1-x)+c_{3} y+c_{5} x y+c_{6} y^{2} \rightarrow \\
p(0,1)=c_{3}+c_{6}=0 \rightarrow c_{3}=-c_{6} \rightarrow \\
p(x, y)=c_{2} x(1-x)+c_{3} y(1-y)+c_{5} x y
\end{array} .
\end{aligned}
$$

Now pick 3 order points fur dols. Lets try ore if the form $a_{4}=(x, 0) \rightarrow p(x, 0)=c_{2} x(1-x)$ chore $0<x<1$ so $x, 1-x \neq 0$. Natal clovine is $x=1 / z$, so $a_{4}=(1 / 2,0)$ and def $\# 4$ is $p(1 / 2,0)=\frac{c_{2}}{4}=0 \rightarrow$ $c_{2}=0 \rightarrow p(x, y)=c_{3} y(1-y)+c_{5} x y$.

Symmety $\rightarrow a_{5}=(0,1 / 2) \rightarrow$ dof $\# 5$ is $p(0,1 / 2)$

$$
=\frac{c_{3}}{4}=0 \rightarrow c_{3}=0 \rightarrow p(x, y)=c_{5} x y
$$

pick dof $\# 6$ to be ang $(x, y) \in \hat{k}$ so $x y \neq 0$.
Natual chuice is $x=y=1 / 2$ so dof \# 6
i) $p(1 / 2,1 / 2)=\frac{C_{5}}{4}=0 \rightarrow C_{5}=0$
$\therefore \quad w /$ duf's

If $p\left(a_{i}\right)=0 \quad \forall i$ then $p=0 \therefore$ unisolent.

$$
P_{3}(T)=\operatorname{span}\left\{1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3}\right\}
$$

Need 10 DOF'S. Trying the sane idea as before is messy.
Let's do sumething else.
Start tryivy to prove unisulence and define DUF'S alling the ney:

$$
\begin{aligned}
p(x, y)= & c_{1}+c_{2} x+c_{3} y+c_{4} x^{2}+c_{5} x y+c_{6} y^{2}+ \\
& c_{7} x^{3}+c_{8} x^{2} y+c_{9} x y^{2}+c_{10} y^{3}
\end{aligned}
$$

Dof \#1 $\quad p(0,0)=c_{1}=0$
Dof \#2 $\partial_{x p}(x, y)=c_{2}+2 c_{4} x+c_{5} y+3 c_{7} x^{2}$

$$
+2 C_{8} x y+C_{9} y^{2}
$$

$$
\begin{aligned}
\partial_{y p}(x, y)= & C_{3}+C_{5} x+2 C_{6 y}+C_{8} x^{2}+2 c_{9} x y \\
& +3 c_{10} y^{2}
\end{aligned}
$$

Dof \#3 $\quad \partial_{y} p(0,0)=C_{3}=0$

$$
\begin{aligned}
& p(x, y)=c_{4} x^{2}+c_{5} x y+c_{6} y^{2}+c_{7} x^{3}+c_{8} x^{2} y+c_{4} x y^{2}+c_{10} y^{3} \\
& p(x, 0)=c_{4} x^{2}+c_{7} x^{3}
\end{aligned}
$$

Dof \#4 $\quad p(1,0)=C_{4}+c_{7}=0 \rightarrow C_{4}=-c_{7}$

$$
\begin{aligned}
p(x, y)=c_{4} x^{2}(1-x) & +c_{5} x y+c_{8} x^{2} y+c_{4} x y^{2}+c_{10} y^{3} \\
& +c_{6} y^{2}
\end{aligned}
$$

Dof\#5 $p(0,1)=C_{6}+C_{10}=0 \rightarrow C_{6}=-C_{10} \rightarrow$

$$
\begin{gathered}
p(x, y)=c_{4} x^{2}(1-x)+c_{5} x y+c_{6} y^{2}(1-y)+ \\
c_{8} x^{2} y+c_{9} x y^{2}
\end{gathered}
$$

$$
\partial_{x} p(x, y)=c_{4}\left(2 x-3 x^{2}\right)+c_{5} y+2 c_{8} x y+c_{9} y^{2}
$$

Dof \#6 $\quad \partial_{x} p(1,0)=-c_{4}=0 \rightarrow c_{4}=0$
DOF\#7 $\quad \partial y p(0,1)=-c_{6}=0 \rightarrow c_{6}=0$

$$
\begin{aligned}
\therefore & p(x, y)=c_{5} x y+c_{8} x^{2} y+c_{9} x y^{2} \\
& \partial_{x} p(x, y)=c_{5} y+2 c_{8} x y+c_{9} y^{2} \\
& \partial_{y} p(x, y)=c_{5} x+c_{8} x^{2}+2 c_{9} x y
\end{aligned}
$$

DOF\#8 $\left.\quad \partial_{x p}(0,1)=c_{5}+c_{9}=0 \rightarrow c_{5}=-c_{9}\right\} \rightarrow c_{8}=c_{9}$

$$
\text { DoF\#9 dyp }(1,0)=c_{5}+c_{8}=0 \rightarrow c_{5}=-c_{8}
$$

$$
\therefore \quad p(x, y)=c_{s}\left(x y-x^{2} y-x y^{2}\right)
$$

DOF \# $10 \quad P(1 / 3,1 / 3)=C_{5}\left(\frac{1}{9}-\frac{1}{27}-\frac{1}{27}\right)=0 \rightarrow$

$$
C_{5}=0
$$

unisolvent!

$$
\begin{gathered}
P_{4}(T)=\operatorname{span}\left\{1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}, y^{3},\right. \\
\left.x^{4}, x^{3}-1, x^{2} y^{2}, x y^{3}, y^{4}\right\}
\end{gathered}
$$

Need 15 DOFS for this one. I'm tor lazy to do it.
f. Non-conforminy: "Broken" finis element space

$$
V_{n}^{b}=\left\{\psi_{n} \in L^{2}(\Omega) \mid \phi_{n} \circ T_{k} \in P^{\prime}(\hat{K}) \forall k \in \tau_{n}\right\}
$$

Notice we do net require continuity. In ID, a typical ϕ_{n} looks line

Notice the jumps, hence "broken". the "non-conforming"
Basic the oreg tells us $V_{h}^{b} \notin H^{\prime}(\Omega)$ property H^{\prime}-conforming: continues FE space

$$
V_{n}^{c}=\left\{\phi_{h} \in C^{0}(\Omega) \mid \phi_{n} \circ T_{k} \in P^{\prime}(\hat{k}) \forall K\right\}
$$

- Now we impose continuity

Basic theory tells us $V_{n}^{c} \subset H^{\prime}(\Omega)$
\uparrow
the conforming property
H^{2}-conforming: For H^{\prime}-conforming, we needed functions to be cts on edges of mesh. For H^{2}-conforming, we need functions to be C^{\prime} on edges of the mesh. I haven't worked w/ H^{2} - conforming FE before, but it looks line the FE in III is H^{2} - con forming.
g. Les V be a Banach space and $a: V \times V \rightarrow \mathbb{R}, \quad F: V \rightarrow \mathbb{R}$ satisfy

1. a is cts, elliptic, bilinear
2. F is cts, linear

Les V_{h} be a subspace of V. Then we know \exists unique $u \in V$ so

$$
a(u, \phi)=F(\phi) \quad \forall \phi \in V \text { and }
$$

\exists unique $u_{n} \in V_{n}$ so $\quad a\left(u_{n}, \phi_{n}\right)=F\left(\phi_{n}\right) \quad \forall \phi_{n} \in V_{n}$.

Cen's lemma states that $Z C>0$ so

$$
\left\|u-u_{n}\right\|_{v} \leq C \inf _{\phi_{n} \in v_{n}}\left\|u-\phi_{n}\right\|_{v} .
$$

This estimate is quasi-uptimal b / c of the constant C. To see chen we obtain the optimal estimate

$$
\left\|u-u_{n}\right\|_{v}=\min _{\alpha_{n} \in V_{h}}\left\|u-\phi_{n}\right\|_{v} \text {, Let's }
$$

prove Cen's lemma:
pf. observe: $\quad a\left(u-u_{n}, \phi_{n}\right)=0 \quad \forall \phi_{n} \in U_{n}$.
Thus $\alpha\left\|u-u_{n}\right\|^{2} \leq a\left(u-u_{n}, u-u_{n}\right)$

$$
\begin{aligned}
&=a\left(u-u_{n}, u-\phi_{n}\right) \\
& \rightarrow C\left\|u-u_{n}\right\|\left\|u-\phi_{n}\right\|
\end{aligned}
$$

Continuity

$$
\rightarrow \quad\left\|u-u_{n}\right\| \leq \frac{c}{\alpha}\left\|u-\phi_{n}\right\| \quad \forall \phi_{n} \in v_{n}
$$

We observe then if $\frac{C}{\alpha} \leq 1$, then
the last live of the proof actually reads

$$
\left\|u-u_{n}\right\| \leq\left\|u-\phi_{n}\right\| \forall \phi_{n}+\psi_{n} \rightarrow\left\|u-u_{n}\right\|=\min _{\psi_{n}+v_{n}}\left\|u-\phi_{n}\right\|,
$$

so optimality is obtained when (*) holds.

One wang for this to hold is when
a is symmetric, (t), coercive, bilinear this implies $a(\cdots)$ is an inner product on V
and we take $\|u\|_{v}=\sqrt{a(u, u)}$ the energy norm,
h. Gaterkin ortheyenality:

Let $\quad \underbrace{a: V \times V \rightarrow \mathbb{R}}_{\text {biliven }}, \quad \underbrace{F: V \rightarrow \mathbb{R}}_{\text {liven }}$
and let $V_{n} \subset V$. Then if there exists $u \in V_{\text {got }} a(u, \phi)=F(\phi) \quad \forall \phi \in V$,
and if $\exists u_{n} \in V_{n}$ st $a\left(u_{n}, \phi_{n}\right)=F\left(\phi_{n}\right) \quad \forall \phi_{n} \in U_{n}$, we have Galerkin ovthoyonaling:

$$
\begin{aligned}
& a\left(u-u_{n}, \phi_{n}\right)=0 \quad \forall \phi_{n} \in v_{n} \\
& \text { pf. } \quad a\left(u, \phi_{n}\right)=F\left(\phi_{n}\right)=a\left(u_{n}, \phi_{n}\right) \rightarrow \\
& \uparrow \\
& v_{n} \subset v
\end{aligned}
$$

$$
\begin{aligned}
a\left(u-u_{n}, \phi_{n}\right) & =a\left(u, \phi_{n}\right)-a\left(u_{n}, \phi_{n}\right) \\
& =F\left(\phi_{n}\right)-F\left(\phi_{n}\right)=0
\end{aligned}
$$

i, j : There should be in the class notes.
III. $S K \pm P$!
IV. Covered in recitation + some results are in the notes
V. Check your old HW's / my old HW Hints

