Finite Differences

Consider the following ODE:

$$
\left\lvert\, \begin{aligned}
& -\rho u^{\prime \prime}(x)+q u^{\prime}(x)+r u(x)=f(x), a<x<b \\
& u(a)=g_{a} \\
& u(b)=y_{b}
\end{aligned}\right.
$$

We wish to numerically approximate the solution u to this problem. The key mathematical tool we are going to use is Taylor's Theorem:
continuous
If $u:(a, b) \rightarrow \mathbb{R}$ has $k+1$ derivatives at
$x \in(a, b)$, then for all sufficiently small h,

$$
u(x+h)=\underbrace{\left.u(x)+u^{\prime}(x) h+u^{\prime \prime}(x) \frac{h^{2}}{2}+\cdots+u^{(k)}(x) \frac{h^{k}}{k!}+O\left(h^{k+1}\right)\right)}_{P_{h}(x)}
$$

where the $O\left(h^{k+1}\right)$ simply means then there is a constant C so $\left|u(x+h)-P_{n}(x)\right| \leq C h^{k+1}$ when h is sufficiently small.

How do we use this? We want to replace the derivatives in our PDE by certain differences involving $u(x+h)$ and $u(x)$ for small h. From Taylor's theorem with $k=1$, we have

$$
\begin{aligned}
& u(x+h)=u(x)+u^{\prime}(x) h+o\left(h^{2}\right) \longrightarrow \\
& \frac{u(x+h)-u(x)}{h}=u^{\prime}(x)+o(h)
\end{aligned}
$$

This can be interpreted as say ing that we can replace $u^{\prime}(x)$ by $\frac{u(x+h)-u(x)}{h}$ and we will introduce an error that scales like n. This is known as a first order approximation of $u^{\prime}(x)$.

Now let's approximate $u^{\prime \prime}(x)$. We will once again use Taylor's Theorem, but in a more clever way. From Taylor's theorem with $k=3$

$$
u(x+h)=u(x)+u^{\prime}(x) h+u^{\prime \prime}(x) \frac{h^{2}}{2}+u^{\prime \prime \prime}(x) \frac{h^{3}}{6}+o\left(h^{4}\right)
$$

We can also replace h by $-h$ in the above to get

$$
u(x-h)=u(x)-u^{\prime}(x) h+u^{\prime \prime}(x) \frac{h^{2}}{2}-u^{\prime \prime \prime}(x) \frac{h^{3}}{6}+o\left(h^{4}\right)
$$

Adding these two equations gives vs

$$
\begin{aligned}
& u(x+h)+u(x-h)=2 u(x)+u^{\prime \prime}(x) h^{2}+o\left(h^{4}\right) \rightarrow \\
& \frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}=u^{\prime \prime}(x)+o\left(h^{2}\right) .
\end{aligned}
$$

This says that we can replace $u^{\prime \prime}(x)$ by
$\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}$ and we will only
introduce an error of order h^{2}. This is known as a second order approximation to $u^{\prime \prime}(x)$.

To summarize:

$$
\begin{aligned}
& u^{\prime}(x)=\frac{u(x+h)-u(x)}{h}+o(h) \\
& u^{\prime \prime}(x)=\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}+o\left(h^{2}\right)
\end{aligned}
$$

Let us substitute these into our ODE:

$$
\left[\begin{array}{c}
-\rho\left(\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}+o\left(h^{2}\right)\right)+ \\
q\left(\frac{u(x+h)-u(x)}{h}+o(h)\right)+r u(x)
\end{array}\right]=f(x)
$$

The left side can be rewritten as

$$
\underbrace{\frac{-\rho}{h^{2}}}_{:=\alpha} u(x-h)+\underbrace{\left[\frac{2 p}{h^{2}}-\frac{q}{n}+r\right]}_{:=\beta} u(x)+\underbrace{\left[\frac{q}{h}-\frac{\rho}{h^{2}}\right]}_{:=r} u(x+h)+
$$

so thant

$$
\alpha u(x-h)+\beta u(x)+\gamma u(x+h)+o(h)=f(x)
$$

This says that, for sufficiently small h, our solution U to our ODE satisfies the equation

$$
\alpha u(x-h)+\beta u(x)+\gamma u(x+h)=f(x)
$$

up to an approximation error that is of size h.

This is known as the l $^{\text {st }}$ order forward finite difference approximation to our ODE at the point x.

So far we have shown thent if u solves our $O D E$, then u approximately satisfies the finite difference equation at each $a<x<b$. We are now going to construct a function u_{n} that solves the finire difference equation at finitely many points $a<x_{1}<x_{2}<\ldots<x_{N}<b$ and which also satisfies the boundary conditions $u_{n}(a)=g_{a}, u_{n}(b)=g_{b}$. This u_{n} will be a good approximation of the original solution U.

To start, let $k>0$ and let $h=\frac{b-a}{2^{k}}$.
Now let $x_{i}=a+i h$ for $i=0,1, \ldots, 2^{k}$.
Let $u_{n}:[a, b] \rightarrow \mathbb{R}$ be piecewise linear on each
$\left[x_{i}, x_{i+1}\right]$ and satisfy the finite difference equation

$$
\alpha u\left(x_{i}-h\right)+\beta u\left(x_{i}\right)+\gamma u\left(x_{i}+h\right)=f\left(x_{i}\right)
$$

for each $i=1,2, \ldots, 2^{k}-1$ as well as the boundary
conditions

$$
\begin{aligned}
& u(a)=u\left(x_{0}\right)=g_{a} \\
& u(b)=u\left(x_{2^{x}}\right)=g_{b}
\end{aligned}
$$

For notation, let $u_{i}=u\left(x_{i}\right)$ and $f_{i}=f\left(x_{i}\right)$.
Since $x_{i}-h=x_{i-1}$ and $x_{i}+h=x_{i+1}$, we
have the following system of equentrons:

$$
\begin{aligned}
& =g_{a} \\
& =\beta u_{0}+\beta u_{1}+\gamma u_{2} \\
& =f_{1} \\
& =f_{2} \\
& \\
& \alpha u_{2^{k}-2}+\beta u_{2}+\gamma u_{3}
\end{aligned}
$$

There are $2^{k}+1$ linear equations in $2^{k}+1$ unknowns $u_{0}, u_{1}, \ldots, u_{2} k$. We can solve this system for the $u_{0}, u_{1}, \ldots, u_{2} k$. Since u_{n} is piecewise linear on each $\left[x_{i}, x_{i+1}\right]$, these $2^{k}+1$ values uniquely determine u_{n}. For example, u_{n} looks like (here $k=3$)

To Summarize the Finite Difference Method:

1. Discretize the PDE with finite differences

$$
\left\lvert\, \begin{aligned}
& -\rho u^{\prime \prime}(x)+q u^{\prime}(x)+r u(x)=f(x) \\
& u(a)=g_{a} \\
& u(b)=g_{b}
\end{aligned} \longrightarrow \begin{aligned}
& -\rho\left(\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}}\right)+q\left(\frac{u(x+h)-u(x)}{h}\right)+r u(x)=f(x) \\
& u(a)=g_{a} \\
& u(b)=g_{b}
\end{aligned}\right.
$$

2. Discuetize the domain

$$
h=\frac{b-a}{2^{k}}
$$

$$
\begin{array}{lll}
x_{0}=a & x_{1} & x_{2} \\
x_{3}=a+i h & i=0,1, \ldots, 2_{2}^{k}=b
\end{array}
$$

3. Set up linear sy stem

$$
\begin{aligned}
& u_{0}=g_{a} \\
&-\rho\left(\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}\right)+q\left(\frac{u_{i+1}-u_{i}}{n}\right)+r u_{i}=f_{i} \quad i=1, \ldots, 2^{k}-1 \\
& u_{2}^{k}=g_{b} \\
& u_{i}=u\left(x_{i}\right) \\
& f_{i}=f\left(x_{i}\right)
\end{aligned}
$$

4. Solve liner system for $u_{0}, u_{1}, \ldots, u_{2 k}$

Remark In step 1, we used a $2^{\text {nd }}$ order approximation for $u^{\prime \prime}$ bour only a $1^{\text {st }}$ order approximation for u^{\prime}. This reduces the accuracy
of our method to only $1^{\text {st }}$ order. Is there a way to approximate $u^{\prime \prime}$ to the secend order, thus boosting the accuracy of our method by 1 degree higher? Yes! Here's how.

Start with Taylor's Theorem with $k=2$, h, and $-h:$
(1) $u(x+h)=u(x)+u^{\prime}(x) h+\frac{u^{\prime \prime}(x) \frac{h^{2}}{2}+O\left(h^{3}\right) ~}{2}$
(2) $u(x-h)=u(x)-u^{\prime}(x) h+u^{\prime \prime}(x) \frac{h^{2}}{2}+o\left(h^{3}\right)$

Subtract equation 2 from equation 1 :

$$
\begin{aligned}
& u(x+h)-u(x-h)=2 u^{\prime}(x) h+o\left(h^{3}\right) \rightarrow \\
& \frac{u(x+h)-u(x-h)}{2 h}=u^{\prime}(x)+o\left(h^{2}\right)
\end{aligned}
$$

This gives us a $2^{\text {nd }}$ order centered
approximation of $u^{\prime}(x)$. Replace $u^{\prime}(x)$
with $\frac{u(x+h)-u(x-h)}{2 h}$ in step 1 to get a $2^{n d}$ order method. This will modify what your linear system looks like in step 3 .

I leave the details to you as an exercise.

Some final remarles:

1. We can also discretize $u^{\prime}(x)$ via

$$
u^{\prime}(x)=\frac{u(x)-u(x-n)}{n}+o(n)
$$

This known as a $1^{\text {st }}$ order backwards difference.
2. In our original ODE

$$
-\rho u^{\prime \prime}(x)+q u^{\prime}(x)+r u(x)=f(x)
$$

the middle term of $u^{\prime}(x)$, known as the
advection term, gives vise to some common terminology:
(i) If $q>0$:

- The forward approximatron

$$
q u^{\prime}(x) \approx q\left(\frac{u(x+h)-u(x)}{h}\right) \quad \text { is }
$$

called a downwind approximation,

- The backward approximation

$$
q u^{\prime}(x) \approx q\left(\frac{u(x)-u(x-h)}{n}\right) \text { is }
$$

called an upwind approximation.
(ii) If $q<0$

- The forward approximation is called an upwind approximation.
- The backward approximation is called a downwind approximation.

