
 

FiniteDifferences

Consider the following ODE
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we wish to numerically approximate the solution

u to this problem The key mathematical tool

we are going to use is Taylor's Theorem
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where the Oln't simply means that there is a constant
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How do we use this We want to replace the derivatives

in our PDE by certain differences involving Ulxth and

U x for small h From Taylor's theorem with K 1

we have

Ulxth Mix t n'ath t o h2
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This can be interpreted as saying that we can

replace u'd by Italy and we will introduce

an error that scales like h This is known as

a firstorder approximation of U x

Now let's approximate u x We will once again

use Taylor's theorem but in a more clever way

From Taylor's theorem with K 3
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We can also replace h by h in the above to

get

us x h u ex U x h t U x h U x 43 01h4
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Adding these two equations gives us

alxth t ult h 2ulx t u x h t 01h4
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This says that we can replace U lx by

Ixth2tuch and we will only

introduce an error of order h This is known

as a secondorder approximation to U x

To summarize
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Let us substitute these into our ODE
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The left side can be rewritten as
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This says that for sufficiently small h our solution

U to our ODE satisfies the equation
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up to an approximation error that is of size h

This is known as the
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then u approximately satisfies the finite differencei
construct a function Un that solves the finite difference

equation at finitely many points as x x2 c Cx Cb

and which also satisfies the boundary conditions

Unla ga Unlb gb This Un will be a

good approximation of the original solution U

To start let K 0 and let h bff
Now let Xi a t in fur 5 0,1 n 2k

Let Un Laib IR be piecewise linear on each



Xi Xin and satisfy the finite difference

equation
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for each i 1,2 2k 1 as well as the boundary

conditions U a U Xo ga

u b U XK gb

For notation let U Ulxi and fi f xi

Sine Xi h Xi l and Xi th Xin we

have the following system of equations
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There are 2k I linear equations in 2k H

unknowns Uo Ui Uzk We can solve this

system for the Uo Un Uzk Since Un is

piecewise linear on each Xi Xin these 24 1

values uniquely determine Un For example

Un looks like here K 3
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To Summarize the Finite Difference Method

I Discretize the PDE with finite differences
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2 Discretize the domain

p
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3 Set up linear system
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4 Solve liner system for Uo Ui Yak

Remaly In step I we used a 2nd order

approximation for u but only a 1st order

approximation for u This reduces the accuracy



of our method to only 1st order Is there a

way to approximate u to the second order

thus boosting the accuracy of our method by

I degree higher Yes Here's how

Start with Taylor's theorem with K 2 h and

h
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Subtract equation 2 from equation 1

Ulxth ult h 2ulixth t 01h3
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This gives us a 2ndordercentened



approximation of u lx Replace U x

with Unth
n

h in step I to get

a 2nd order method This will modify what

your linear system looks like in step 3

I leave the details to you as an exercise

Some final remarks

1 We can also discretize u x via

n x Utah t 01h

this known as a bnkfence

2 In our original OD E
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the middle term quick known as the



advection term gives rise to some common

terminology

i If of 70

The forward approximation

quiet a q actual is

called a downwind approximation

The backward approximation

quix 8 tf is

called an upwind approximation

ii If q co

The forward approximation is

called an upwind approximation

The backward approximation is

called a downwind approximation


