Definition Let K be a polygon (square or triangle),
$P(K)$ a space of polynomials defined on K, and \sum a set of linear functional on $P(K)$, culled degrees of freedom.
Then the triple $\left(K, P(K), \sum\right)$ is unisolvent
if 1. \# $\#=\operatorname{dim} P(k)$
2. For any $p \in P(k)$, if $\sigma(p)=0$ for all $\sigma \in E$, then $p=0$.

Remarks. A member of $P(K)$ is a polynomial $p: K \rightarrow \mathbb{R}$. Fo example, if K is the unit square and $P(K)$ is the space of all degree at most 2 polynomials on K, then a typical member of $P(K)$ is of the furn $p(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{2}+c_{5} x y+c_{6} y^{2}$ for some constants $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}$

- A member of \sum is a linear map
$\sigma: P(K) \rightarrow \mathbb{R}$. That is, v assigns to each polynomial $p \in P(K)$ a real number $v(p) \in \mathbb{R}$, and for any scalar $c \in \mathbb{R}$, any 2 polynomials $p_{1}, p_{2} \in P(K)$

$$
\sigma\left(c p_{1}+p_{2}\right)=c \sigma\left(p_{1}\right)+\sigma\left(p_{2}\right) .
$$

For example, if we fix a point $\left(x_{0}, y_{0}\right) \in K$, then $\sigma(p)=p\left(x_{0}, y_{0}\right)$ is a valid degree of freedom.
Other examples include $\sigma(\rho)=\partial x p\left(x_{0}, y_{0}\right)$,

$$
\begin{aligned}
& v(p)=\int_{K} \quad \int_{K} p(x, y) d x d y, \\
& \\
& \quad \begin{array}{c}
\begin{array}{c}
\text { normal derivative } \\
\text { for }\left(x_{0}, y_{0}\right) \text { on boundary } \\
\text { of } K
\end{array}
\end{array} \underbrace{\partial_{n} p\left(x_{0}, y_{0}\right)}_{n}=\nabla p\left(x_{0}, y_{0}\right) \cdot \underbrace{n\left(x_{0}, y_{0}\right)}_{\begin{array}{c}
\text { outward unit } \\
\text { normal }
\end{array}}
\end{aligned}
$$

- Condition I of unisolvence means that the dimension of the vector space $P(K)$ must be the same as the number of degrees of freedom (DOF's)

For example, wt $K=$

$$
P(K)=\underbrace{P_{1}(K)}_{\text {dey } \leq 1}=\operatorname{span}\{1, x, y\}
$$

$$
\begin{array}{ll}
\sigma_{1}(p)=p(0,0) & v_{i}: p(k) \rightarrow \mathbb{R} \\
v_{2}(p)=p(1,0) & \sum=\left\{v_{1}, v_{2}, v_{3}\right\} \\
v_{3}(p)=p(0,1) &
\end{array}
$$

we have $\operatorname{dim} P(K)=3=\# \sum$

On the other hand, if we keep \sum the same but now take $P(K)=\underbrace{P_{2}(K)}=\operatorname{span}\left\{1, x, y, x^{2}, x y\right.$, deg ≤ 2 polyoumuals
we have $\operatorname{dim} P(K)=6 \neq \# \Sigma=3$.

- Condition 2 of onisulvence says that the only polynomial that can vanish on / annihilate all of the DOF's is the zero polynomial.

For example,

$$
\begin{aligned}
& K=P(K)=P_{1}(K) \\
& \sigma_{1}(p)=p(0,0) \quad \sigma_{2}^{(0,1)}(p)=p(1,0) \quad \sigma_{3}(p)=p(0,1) \\
& Z=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}
\end{aligned}
$$

claim: $(K, P(K), \Sigma)$ is unisolvent.
proof. $\quad \operatorname{dim} P(K)=3=\# \sum$
Now let $p \in P(K)$ satisfy

$$
\begin{array}{ll}
\sigma_{1}(p)=p(0,0)=0, & \sigma_{3}(p)=p(0,1)=0 . \\
\sigma_{2}(p)=p(1,0)=0, &
\end{array}
$$

We will show this implies $P=0$.
Since $p \in P(K)=\operatorname{span}\{1, x, y\}$,
\exists constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ so

$$
p(x, y)=c_{1}+c_{2} x+c_{3} y \quad \forall(x, y)+k
$$

Then

$$
\text { Then } \left.\begin{array}{rl}
p(0,0) & =c_{1}=0 \\
p(1,0) & =c_{1}+c_{2}=0 \\
p(0,1) & =c_{1}+c_{3}=0
\end{array}\right\} \rightarrow c_{1}=c_{2}=c_{3}=0
$$

Thus conditions 1,2 cone satisfied, so $(K, P(K), \Sigma)$ is uniolvent.

Another example

$$
P(K)=P_{2}(K)=\operatorname{span}\left\{1, x, y, x^{2}, y^{2}, x y\right\}
$$

$$
\begin{array}{ll}
\sigma_{1}(p)=p(0,0) & v_{4}(p)=p(1,1) \\
\sigma_{2}(p)=p(1,0) & v_{5}(p)=p(1 / 2,1 / 2) \\
\sigma_{3}(p)=p(0,1) & v_{6}(p)=\int_{p^{2}} p(x, y) d x d y
\end{array}
$$

claim: $(K, P(K), \Sigma)$ is not unisolvent.
proof. $\quad \operatorname{dim} P(K)=6=\# \sum$. Now
suppose $p \in P(K)$ satisfies $\sigma_{i}(p)=0 \quad \forall i$.

$$
\exists c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6} \in \mathbb{R} \text { so }
$$

Then $p \in P(K) \rightarrow p(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{2}+$

$$
c_{5} x y+c_{6} y^{2} \quad \forall(x, y) \in K
$$

$$
\begin{align*}
\therefore \quad \sigma_{1}(p) & =p(0,0)=c_{1}=0 \quad(1) \tag{1}\\
v_{2}(p) & =p(1,0)=c_{1}+c_{2}+c_{31}=0 \quad(2) \\
v_{3}(p) & =p(0,1)=c_{1}+c_{3}+c_{6}=0 \tag{3}\\
v_{4}(p) & =p(1,1)=c_{1}+c_{2}+c_{3}+c_{4}+c_{5}+c_{6}=0 \quad(4) \tag{4}\\
\sigma_{5}(p) & =p(1 / 2,1 / 2)=c_{1}+c_{2} / 2+c_{3} / 2+c_{4} / 4+c_{5} / 4+c_{6} / 4=0
\end{align*}
$$

$$
\begin{aligned}
& \sigma_{6}(p)=\int_{K} p(x, y) d x d y=\int_{0}^{1} \int_{0}^{1} c_{1}+c_{2} x+c_{3} y+ \\
& c_{4} x^{2}+c_{5} x y+c_{6} y^{2} d x d y \\
& =c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{2}+\frac{c_{4}}{3}+\frac{c_{5}}{4}+\frac{c_{6}}{3}=0
\end{aligned}
$$

(6)

Equations (1) - (6) can be put in matrix-vector form like

$$
\underbrace{\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 / 2 & 1 / 2 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 & 1 / 2 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 3
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6}
\end{array}\right]}_{\vec{C}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

If $\operatorname{det} A \neq 0$, then A^{-1} exists, so

$$
\overrightarrow{A C}=0 \rightarrow A^{-1} A \vec{C}=A^{-1} 0 \rightarrow \vec{c}=0 \rightarrow p=0
$$

\therefore unisolvent!

If $\operatorname{det} A=0$ then A^{-1} dues nut exist, and there must exist some choice of $C_{1}, \ldots, C_{6} \in \mathbb{R} \quad \omega /$ some $C_{i} \neq 0$ so

$$
A C=0
$$

ie $\quad p(x, y)=c_{1}+c_{2} x+c_{3} y+c_{4} x^{2}+c_{5} x y+c_{6} y^{2}$
is not the zero polynomial but all $\sigma_{i}(p)=0$. Thus condition $\# 2$ fails to hold, so $\left(K, P, \sum\right)$ is not insolvent.

Thus (K, P, Σ) is misolvent $\leftrightarrow \operatorname{det} A \neq 0$. Use a computer (or do it by hand) to compute $\operatorname{det} A=0$, so (K, P, Σ) is
not unisolvent.
Indeed $\quad p(x, y)=x-x^{2}-y+y^{2}$ satisfies

$$
\begin{array}{lc}
p(0,0)=0 & p(1 / 2, y / 2)=0 \\
p(1,0)=0 & \int_{0}^{1} \int_{0}^{1} x-x^{2}-y+y^{2} d x d y=0 \\
p(0,1)=0 & \text { yer } \quad p \neq 0 .
\end{array}
$$

DOFS for HW problems

HL 6 Q II

$$
\sigma_{i}(p)=p\left(m_{i}\right)
$$

$$
\sigma_{i}(p)=p\left(a_{i}\right)
$$

by $\nabla p\left(a_{i}\right)$ we mean $\sigma_{i}^{\prime}(p)=\partial \times p\left(a_{i}\right)$

$$
\sigma_{i}^{2}(p)=\partial y p\left(a_{i}\right)
$$

HoW $7 \quad Q$ II $K=$

$$
v_{i}(p)=p(z)
$$

$b_{i j}$ are the Gauss points:

$$
b_{i j}=T_{i}\left(x_{j}\right)
$$

when

$$
\begin{aligned}
& T_{1}(x)=v_{1}\left(\frac{1-x}{2}\right)+v_{2}\left(\frac{1+x}{2}\right) \\
& T_{2}(x)=v_{2}\left(\frac{1-x}{2}\right)+v_{2}\left(\frac{1+x}{2}\right) \\
& T_{3}(x)=V_{3}\left(\frac{1-x}{2}\right)+v_{1}\left(\frac{1+x}{2}\right)
\end{aligned}
$$

$T_{i}:[-1,1] \rightarrow e_{i}$ edge of K
by $\nabla^{2} p\left(a_{i}\right)$ we mean $\left.\sigma_{i}^{\prime}=\partial x^{2} p\left(a_{i}\right) \quad\right\}^{2 \text { nd-order }}$

$$
\left.\begin{array}{l}
\sigma_{i}^{2}=\partial y^{2} p\left(a_{i}\right) \\
\sigma_{i}^{3}=\partial_{x} \partial_{y} p\left(a_{i}\right)
\end{array}\right\} \text { derivatives }
$$

by $\partial_{n} p\left(m_{i}\right)$ we mean

$$
\sigma_{i}(p)=\partial_{n} p\left(m_{i}\right)=\nabla p\left(m_{i}\right) \cdot n^{\ell}\left(m_{i}\right)
$$

