

Math 152 - Python Lab 2

Directions: Use Python to solve each problem, unless the question states otherwise. (Template link)

- 1. (More review from MATH 151) Given $f(x) = \frac{8x^3 + 9x^2 1}{12x^2 14x^3 + 7}$,
 - (a) Use a for loop (list comprehension) to evaluate f(x) at x = 100, 1000, 10000, 100000,and 1000000 to estimate $\lim_{x\to\infty} f(x)$. (Look at the Lab Overview for MATH 151's Lab 2 to see an example of this.)
 - (b) Plot f(x) on the x-interval [0, 5000] to get a better look.
 - (c) Finally, use SymPy's limit command to compute $\lim_{x\to\infty} f(x)$.
- 2. A jeweler is designing a metal bead that is sphere-shaped with a hole drilled through the center to the opposite side. The bead has radius r millimeters and the hole has a radius of 1 millimeter.
 - (a) Find the volume V(r) of the bead given radius r, using an integral, rotating around the axis parallel to the hole. Hint: there are two valid ways of setting this up.
 - (b) Suppose the jeweler needs the bead to be made of exactly 140 cubic millimeters of metal. Find the radius r needed for such a bead. Give your answer as a decimal approximation using **evalf()**.
- 3. Given $f(x) = \frac{1}{2}x^4$ and $g(x) = |x^2 14|$:
 - (a) Plot the two functions on the same axes with x-interval [-4, 4].
 - (b) Find the points of intersection (approximate if necessary).
 - (c) Find the area of the region enclosed by the two curves (approximate if necessary).
- 4. Evaluate the following integrals.
 - (a) $\int \tan^2(x) dx$
 - (b) $\int x \tan^2(x^2) dx$
 - (c) What strategy could you use to integrate (a) by hand?What additional strategy could you use to integrate (b) by hand?