Recitation notes

Jordan Hoffart

August 20, 2024

1 Organizational matters

- 1. MATH 152 Sections 504/505/506.
- 2. Canvas page <https://canvas.tamu.edu/courses/331381>.
- 3. Website <https://jordanhoffart.github.io/teaching/f24m152>
- 4. Course page <https://www.math.tamu.edu/courses/math152/>
- 5. Tuesday recitations in HEB 137/222. Thursday labs in BLOC 123/124.
- 6. Recitations
	- (a) Review last week's material.
	- (b) Take a quiz.
- 7. Labs
	- (a) Bring your own device.
	- (b) Programming in Python.
	- (c) More details on Thursday.

2 Fundamental theorem of calculus

Definition 1 (Antiderivative). Let f be a function defined on an interval I . An antiderivative of f is a differentiable function F defined on I such that

$$
F'(x) = f(x) \tag{1}
$$

for all x in I .

Example 1. Let $f(x) = 3x^2$. Then $F(x) = x^3$ is an antiderivative of f. In fact, for any constant C, $F(x) = x^3 + C$ is an antiderivative of f. One can show that every antiderivative of f is of this form. That is, if F is an antiderivative of f, then there is a constant C such that $F(x) = x^3 + C$.

Theorem 1 (General form of an antiderivative). If F is an antiderivative of f, then for any constant C, $F + C$ is also an antiderivative of f. Conversely, if F, G are antiderivatives of a function f on an interval I, then there is a constant C such that

$$
F(x) = G(x) + C \tag{2}
$$

for all x in I .

Theorem 2 (Fundamental theorem of calculus, part 1). If f is a continuous function on an interval I containing a point a and we define the function F on I by

$$
F(x) = \int_{a}^{x} f(t) dt
$$
 (3)

then F is an antiderivative of f on I .

Example 2. Let $f(x) = e^{x^2}$ on [0, 1]. Then

$$
F(x) = \int_0^x e^{t^2} dt
$$
 (4)

is an antiderivative of f , so

$$
\frac{d}{dx} \int_0^x e^{t^2} dt = \frac{d}{dx} F(x) = f(x) = e^{x^2}.
$$
 (5)

Theorem 3 (Fundamental theorem of calculus, part 2). If f is a continuous function on an interval $[a, b]$ and if F is an antiderivative of f on $[a, b]$, then

$$
\int_{a}^{b} f(x) dx = F(b) - F(a).
$$
 (6)

Example 3. Let $f(x) = \cos x$, so that $F(x) = \sin x$ is an antiderivative of f. Then

$$
\int_0^{\pi} \cos x \, dx = \int_0^{\pi} f(x) \, dx = F(\pi) - F(0) = \sin \pi - \sin 0 = 0. \tag{7}
$$

3 Substitution rule

Definition 2 (Indefinite integral). If f is a function with an antiderivative F , then the indefinite integral of f is the collection of all antiderivatives of f . We denote this collection by

$$
\int f(x) \, dx. \tag{8}
$$

The use of the letter x in our notation is arbitrary. We can use any other symbol, as long as we are consistent. That is, all of these notations represent the indefinite integral of f :

$$
\int f(x) \, dx = \int f(y) \, dy = \int f(z) \, dz = \int f(u) \, du = \dots \tag{9}
$$

as well as any other choices of the symbol of integration.

If F is an antiderivative of f , we will abuse notation and denote the indefinite integral of f by

$$
\int f(x) dx = F(x) + C.
$$
 (10)

Theorem 4 (Substitution rule for indefinite integrals). If g is a differentiable function on an interval I, and if f is a continuous function on an interval J containing the range g(I) of g, then $G: I \to \mathbb{R}$ is an antiderivative of $(f \circ g)g'$ iff $G = F \circ g$ for some antiderivative $F : J \to \mathbb{R}$ of f. We formally summarize this by writing

$$
\int f(g(x))g'(x) dx = \int f(u) du \tag{11}
$$

with $u = g(x)$. We also summarize this by writing

$$
\int f(g(x))g'(x) dx = F(g(x)) + C.
$$
 (12)

Proof. Let F be an antiderivate of f and suppose $G = F \circ g$. Then $(F \circ g)'(x) =$ $F'(g(x))g'(x) = f(g(x))g'(x)$, so $G = F \circ g$ is an antiderivative of $(f \circ g)g'$.

Now let G be an antiderivative of $(f \circ g)g'$. We pick a point $a \in J$ and let

$$
\widetilde{F}(x) = \int_{a}^{x} f(t) dt.
$$
\n(13)

Then we have that \widetilde{F} is an antiderivative of f. From above, we then have that $\widetilde{F}\circ g$ is an antiderivative of $(f\circ g)g'$. Since G is also an antiderivative of $(f\circ g)g'$, there is a constant C such that

$$
G(x) = \tilde{F}(g(x)) + C \tag{14}
$$

for all x in I . Then we let

$$
F(x) = \overline{F}(x) + C,\tag{15}
$$

so that F is an antiderivative of f for which $G = F \circ g$.

Example 4. Let $f(x) = \cos x$ and $g(x) = x^3$ on R. Then by formally setting $u = g(x),$

$$
\int \cos(x^3) 3x^2 dx = \int f(g(x))g'(x) dx \tag{16}
$$

$$
=\int_{c} f(u) du \tag{17}
$$

 \Box

$$
=\int \cos u \, du \tag{18}
$$

$$
= \sin u + C \tag{19}
$$

$$
= \sin x^3 + C. \tag{20}
$$

Theorem 5 (Substitution rule for definite integrals). If g is a differentiable function on an interval $[a, b]$, and if f is a continuous function on the interval between $g(a)$ and $g(b)$, then

$$
\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.
$$
 (21)

Example 5. Let $g(x) = \sin x$ on $[0, \pi]$ and let $f(x) = x^2$. Then

$$
\int_0^\pi \sin(x)^2 \cos x \, dx = \int_a^b f(g(x))g'(x) \, dx \tag{22}
$$

$$
=\int_{g(a)}^{g(b)} f(u) du
$$
 (23)

$$
=\int_0^0 u^2 du\tag{24}
$$

$$
=0.\t(25)
$$