MATH 437 Homework 2 (20 points)

1. Let g =2, 21 =3, 20 =4, x3 = 5.
(a) (1 point) Construct the Lagrange polynomials of maximal degree interpo-
lating these points.

(b) (1 point) Find the Lagrange form of the degree 3 interpolant ps of f(z) =
log(x — 1) using these points.

Solution.
@ (x = 3)(x —4)(z - 5)
Lo@) = G 5)e—ne -3
B (x —2)(x —4)(z - 5)
L) = a9 nE 8"
_(z—=2)(x —3)(x—5)
La(z) = (1—2)(4—3)(4—5)’
B (z—=2)(xz—3)(z—4)
L) = G -a6-9
(b)

p3(x) = 10g(2) L1 (z) + log(3) La(z) + log(4) Ls ().
0

2. (a) (1 point) Using the points xg, 1, 2 and the function f from the previous
problem, construct the Newton form of the degree 2 interpolant ps.

(b) (2 points) Derive a bound on the absolute error max,¢p2 41 [p(z) — f(2)].

Solution.
flai] flzis wiga] flxo, w1, 72]
(a) x() 2 0 10g(2) log(3)—22 log(2)
x1 3 log(2) log(3) —log(2)
xo 4 log(3)

log(3) — 21log(2)

pa(e) = log(2)(x — 2) + 22—

(x —2)(z — 3).



(b) Any valid upper bound will do, as long as there is some mathematical
justification for it. We will discuss 2 different bounds: one that is easy to
compute and one that is a little more difficult to compute.

Using Theorem 3.9 from the notes, for all x € [2, 4], there is ¢, € [2, 4] such

that )
£&) = pala) + L8 @ ) = 1) o).
On the interval [2,4],
@y 2
0< fO(E,) = o =2

Let N3(z) = (z —2)(x — 3)(x —4). To get an easy upper bound that is not
sharp,

max |N3(z)| < max |z — 2| max (x — 3) max |z — 4] = 4.
z€([2,4] z€[2,4] z€[2,4] x€[2,4]

Therefore,

- < ) N. < 8.
e, Ip2 () f(x)\_gg[gﬁ]f (f)mrg[gﬁ}l 3(7)] <

To get a sharper bound that is harder to compute, we improve the bound
on |N3(x)|. The extreme values of N3 on [2,4] occur when Nj(x) = 0. To
simplify the computation, we change variables y = x — 2:

Na(y) = yly — 1)(y —2) = y(y* = 3y +2) =y° = 3y” + 2y.
Then, N3(z) = (x — 2)3 — 3(z — 2)2 + 2(z — 2), so
Nj(z) = 3(x — 2)? — 6(x — 2) + 2.
Therefore, N'(z) = 0 when

Inserting these values of x into N3(x) gives
2
max |Nj(x)| = Ny ( ‘/§> v3
z€(2,4]

3_ X<
3

Thus, a sharper bound is

max Ip2(x) — f(2)] < 9



3. (a) (1 point) Find the Hermite interpolating polynomial p for f(z) = €** using
the data
F0)=1, f(0)=2, f(1) =€ f(1)=2¢?
via divided differences.
(b) (2 points) Using the polynomial p from the previous part, estimate f(0.5).

Solution.

(a) Weset zg = 21 =0 and 23 = z3 = 1. Then

f[zlvz } = 1,
Z2 — 21
flz2, 23] = f'(22) = 2¢7,
Flz0, 21, 29] = flzr, 2] = flzo,21] _ 5 3
Z2 — 20
f[21,22723} - f[ZQ’ZB] — f[ZhZQ] - 62 + ]-7
zZ3 — 21
flz1, 22, 23] — flz0, 21, 22]

f[ZO,Zl,ZQ,Z?,]: =4

)

Z3 — 20
p() = f(20) + fl20, 21)(% — 20) + fl20, 21, 22] (¥ — 20)(z — 21)
+ flz0, 21, 22, 23] (x — 20) (. — 21)(x — 22)
=142z 4+ (e? — 3)2? + 42 (x — 1).
(b) f(0.5) ~ 2.597264024732662.
O

4. (3 points) Implement an algorithm that constructs the Lagrange form of the
interpolating polynomial of a function from given data points (x;, f(x;)). Use
the following data and your implementation to estimate f(0.4):

£(0.1) = =7, £(0.2) = —5, f(0.3) = —2, £(0.5) =1, f(0.6) =3, f(0.7) = 9.

Solution. The implementation is in implementation.py. Using the implemen-
tation in problem_4.py, f(0.4) ~ —0.05. O

5. (3 points) A natural cubic spline S on [0, 2] is defined by

() 142z — a3 0<z<1
xXr) = .
24+ bz —1)+clx—1)2+dxz—-1)3 1<z<2

Find the coefficients b, ¢, and d.



Solution. Call the first piece Sy and the second piece S;. Then the relevant
constraints are

So(1) = S1(1),

So (1) = 57(1),

S7(2) = 0.
Inserting the formulas for Sy and S gives the following system for the coeffi-
cients:

b=-1,
2c = —06,
2c+6d = 0.
Therefore, b= -1, ¢c = —-3,d = 1. O

. (3 points) Consider the differentiation formula

P~ g ((flo+n) - fa-m).

Assuming that f is analytic, find the error of this approximation in terms of h.
That is, find the order r > 0 such that the error decays like O(h").

Solution. We do Taylor expansions up to the second derivative and hide all the
higher order terms: for all z € R, for A > 0 small enough, we have that

2
Flo+8) = £(2) + 3h7"(z) + To- (@) + O(HY),

f(z —2h) = f(x) — 2hf'(x) + 2K f" (x) + O(R®).
Therefore,

flx+3h) — f(z —2h)
5h

so the error is O(h). O

= @)+ 5 @)+ O),

. (3 points) Use the following difference formulas to approximate the derivative
of f(z) = e*® at g = 1 using h = 0.1 and then h = 0.05:

f(zo+h) — flzo — h)
2h
f(zo+h) = f(zo)
h

f'(wo) ~
f'(wo) =

(centered difference),

(forward difference).

Give your answers as decimal numbers.

Solution. We implement the difference formulas in implementation.py and use
them in problem_7.py to compute:



true value: f’(x) = 14.7781121978613

forward difference
h=0.1f>(x) "= 16.359574005034716
h 0.05 f’(x) "= 15.542276272740025

centered difference
h=0.1f>(x) "= 14.876830175105876
h 0.05 f’(x) = 14.802754702883831



