
MATH 437 Homework 2 (20 points)

1. Let x0 = 2, x1 = 3, x2 = 4, x3 = 5.

(a) (1 point) Construct the Lagrange polynomials of maximal degree interpo-
lating these points.

(b) (1 point) Find the Lagrange form of the degree 3 interpolant p3 of f(x) =
log(x− 1) using these points.

Solution.

(a)

L0(x) =
(x− 3)(x− 4)(x− 5)

(2− 3)(2− 4)(2− 5)
,

L1(x) =
(x− 2)(x− 4)(x− 5)

(3− 2)(3− 4)(3− 5)
,

L2(x) =
(x− 2)(x− 3)(x− 5)

(4− 2)(4− 3)(4− 5)
,

L3(x) =
(x− 2)(x− 3)(x− 4)

(5− 2)(5− 3)(5− 4)
.

(b)
p3(x) = log(2)L1(x) + log(3)L2(x) + log(4)L3(x).

2. (a) (1 point) Using the points x0, x1, x2 and the function f from the previous
problem, construct the Newton form of the degree 2 interpolant p2.

(b) (2 points) Derive a bound on the absolute error maxx∈[2,4] |p(x)− f(x)|.
Solution.

(a)

f [xi] f [xi, xi+1] f [x0, x1, x2]

x0 2 0 log(2) log(3)−2 log(2)
2

x1 3 log(2) log(3)− log(2)
x2 4 log(3)

p2(x) = log(2)(x− 2) +
log(3)− 2 log(2)

2
(x− 2)(x− 3).
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(b) Any valid upper bound will do, as long as there is some mathematical
justification for it. We will discuss 2 different bounds: one that is easy to
compute and one that is a little more difficult to compute.

Using Theorem 3.9 from the notes, for all x ∈ [2, 4], there is ξx ∈ [2, 4] such
that

f(x) = p2(x) +
f (3)(ξx)

6
(x− x0)(x− x1)(x− x2).

On the interval [2, 4],

0 < f (3)(ξx) =
2

(ξx − 1)3
≤ 2.

Let N3(x) = (x− 2)(x− 3)(x− 4). To get an easy upper bound that is not
sharp,

max
x∈[2,4]

|N3(x)| ≤ max
x∈[2,4]

|x− 2| max
x∈[2,4]

(x− 3) max
x∈[2,4]

|x− 4| = 4.

Therefore,

max
x∈[2,4]

|p2(x)− f(x)| ≤ max
ξ∈[2,4]

f (3)(ξ) max
x∈[2,4]

|N3(x)| ≤ 8.

To get a sharper bound that is harder to compute, we improve the bound
on |N3(x)|. The extreme values of N3 on [2, 4] occur when N ′

3(x) = 0. To
simplify the computation, we change variables y = x− 2:

N3(y) = y(y − 1)(y − 2) = y(y2 − 3y + 2) = y3 − 3y2 + 2y.

Then, N3(x) = (x− 2)3 − 3(x− 2)2 + 2(x− 2), so

N ′
3(x) = 3(x− 2)2 − 6(x− 2) + 2.

Therefore, N ′(x) = 0 when

x− 2 =
6±

√
36− 24

6
⇐⇒ x = 3±

√
3

3
.

Inserting these values of x into N3(x) gives

max
x∈[2,4]

|N3(x)| = N3

(
3−

√
3

3

)
=

2
√
3

9
.

Thus, a sharper bound is

max
x∈[2,4]

|p2(x)− f(x)| ≤ 4
√
3

9
.
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3. (a) (1 point) Find the Hermite interpolating polynomial p for f(x) = e2x using
the data

f(0) = 1, f ′(0) = 2, f(1) = e2, f ′(1) = 2e2

via divided differences.

(b) (2 points) Using the polynomial p from the previous part, estimate f(0.5).

Solution.

(a) We set z0 = z1 = 0 and z2 = z3 = 1. Then

f(z0) = f(z1) = 1,

f(z2) = f(z3) = e2,

f [z0, z1] = f ′(z0) = 2,

f [z1, z2] =
f(z2)− f(z1)

z2 − z1
= e2 − 1,

f [z2, z3] = f ′(z2) = 2e2,

f [z0, z1, z2] =
f [z1, z2]− f [z0, z1]

z2 − z0
= e2 − 3,

f [z1, z2, z3] =
f [z2, z3]− f [z1, z2]

z3 − z1
= e2 + 1,

f [z0, z1, z2, z3] =
f [z1, z2, z3]− f [z0, z1, z2]

z3 − z0
= 4,

p(x) = f(z0) + f [z0, z1](x− z0) + f [z0, z1, z2](x− z0)(x− z1)

+ f [z0, z1, z2, z3](x− z0)(x− z1)(x− z2)

= 1 + 2x+ (e2 − 3)x2 + 4x2(x− 1).

(b) f(0.5) ≈ 2.597264024732662.

4. (3 points) Implement an algorithm that constructs the Lagrange form of the
interpolating polynomial of a function from given data points (xi, f(xi)). Use
the following data and your implementation to estimate f(0.4):

f(0.1) = −7, f(0.2) = −5, f(0.3) = −2, f(0.5) = 1, f(0.6) = 3, f(0.7) = 9.

Solution. The implementation is in implementation.py. Using the implemen-
tation in problem 4.py, f(0.4) ≈ −0.05.

5. (3 points) A natural cubic spline S on [0, 2] is defined by

S(x) =

{
1 + 2x− x3 0 ≤ x ≤ 1

2 + b(x− 1) + c(x− 1)2 + d(x− 1)3 1 ≤ x ≤ 2
.

Find the coefficients b, c, and d.
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Solution. Call the first piece S0 and the second piece S1. Then the relevant
constraints are

S′
0(1) = S′

1(1),

S′′
0 (1) = S′′

1 (1),

S′′
1 (2) = 0.

Inserting the formulas for S0 and S1 gives the following system for the coeffi-
cients:

b = −1,

2c = −6,

2c+ 6d = 0.

Therefore, b = −1, c = −3, d = 1.

6. (3 points) Consider the differentiation formula

f ′(x) ≈ 1

5h

(
f(x+ 3h)− f(x− 2h)

)
.

Assuming that f is analytic, find the error of this approximation in terms of h.
That is, find the order r > 0 such that the error decays like O(hr).

Solution. We do Taylor expansions up to the second derivative and hide all the
higher order terms: for all x ∈ R, for h > 0 small enough, we have that

f(x+ 3h) = f(x) + 3hf ′(x) +
9h2

2
f ′′(x) +O(h3),

f(x− 2h) = f(x)− 2hf ′(x) + 2h2f ′′(x) +O(h3).

Therefore,

f(x+ 3h)− f(x− 2h)

5h
= f ′(x) +

h

2
f ′′(x) +O(h2),

so the error is O(h).

7. (3 points) Use the following difference formulas to approximate the derivative
of f(x) = e2x at x0 = 1 using h = 0.1 and then h = 0.05:

f ′(x0) ≈
f(x0 + h)− f(x0 − h)

2h
(centered difference),

f ′(x0) ≈
f(x0 + h)− f(x0)

h
(forward difference).

Give your answers as decimal numbers.

Solution. We implement the difference formulas in implementation.py and use
them in problem 7.py to compute:
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true value: f’(x) = 14.7781121978613

forward difference

h = 0.1 f’(x) ~= 16.359574005034716

h = 0.05 f’(x) ~= 15.542276272740025

centered difference

h = 0.1 f’(x) ~= 14.876830175105876

h = 0.05 f’(x) ~= 14.802754702883831
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