
MATH 437 Notes

Jordan Hoffart

February 4, 2026

Contents

1 Lecture 1 2
1.1 Bisection method . 2
1.2 Fixed point methods . 2

2 Lecture 2 5
2.1 Newton’s method . 5
2.2 Quadratic convergence of Newton’s method 5
2.3 Secant method . 6

3 Lecture 3 7
3.1 Polynomial interpolation . 7

4 Lecture 4 11
4.1 Divided differences . 11
4.2 Hermite interpolation . 14

5 Lecture 5 18
5.1 Cubic splines . 18
5.2 Numerical differentiation . 21
5.3 Richardson extrapolation . 23

6 Lecture 6 25
6.1 Numerical integration . 25
6.2 Composite numerical integration 27

7 Lecture 7 28
7.1 Gaussian quadrature . 28
7.2 Euler’s method for ordinary differential equations (ODEs) 31

8 Lecture 8 35
8.1 Higher-order Taylor methods . 35
8.2 Runge–Kutta methods . 36

1

1 Lecture 1

1.1 Bisection method

Let f(x) be a continuous function on the interval [a, b].

Proposition 1.1 (Existence of roots). If f(a)f(b) < 0, then there is a point
p ∈ (a, b) such that f(p) = 0.

Proof. If f(a)f(b) < 0, then f(a) and f(b) have opposite signs. That is, f(a) > 0
and f(b) < 0, or f(a) < 0 and f(b) > 0. By the Intermediate Value Theorem, f
attains all possible values between f(a) and f(b). In particular, there is a point
p ∈ (a, b) where f(p) = 0.

The bisection method is an algorithm to find the point p. The algorithm is
as follows for the case that f(a) < 0 < f(b).

Algorithm 1 Bisection method

1: xleft := a, xright := b, n := 0, x := (xleft + xright)/2
2: while |xleft − xright| > tol and n ≤ nmax do
3: if f(x) = 0 then
4: return x
5: else if f(x) < 0 then
6: xleft ← x
7: else
8: xright ← x
9: end if

10: n← n+ 1
11: x← (xleft + xright)/2
12: end while
13: return x

1.2 Fixed point methods

Given a continuous function g(x), suppose we want to solve the equation x =
g(x). One possible iterative method is defined by

xn+1 = g(xn), (1)

where we provide a starting value x0. Whether or not this converges to a solution
as n→∞ depends on the properties of g and the starting value x0.

Theorem 1.2 (Existence of fixed points). If g(x) ∈ [a, b] for all x ∈ [a, b], then
g has a fixed point in [a, b].

Proof. Let h(x) = g(x) − x. Then h(a) ≤ 0, h(b) ≥ 0 and h is continuous. If
h(a) = 0, then a is a fixed point of g. If h(b) = 0, then b is a fixed point of
g. If h(a) and h(b) are both nonzero, then h(a) < 0 < h(b). By the previous
proposition, there exists x0 ∈ (a, b) such that h(x0) = 0, i.e. g(x0) = x0.

2

Theorem 1.3 (Convergence of fixed-point methods). Suppose g is differen-
tiable, and there exists k such that |g′(x)| ≤ k < 1 for all x ∈ [a, b]. Then, g
has a unique fixed point, and the iterative method (1) converges to this point for
any initial value x0 ∈ [a, b].

Proof. By the Mean Value Theorem, for distinct x, y ∈ [a, b], there exists z ∈
[a, b] such that

g(x)− g(y) = g′(z)(x− y).

Therefore, since |g′(z)| ≤ k < 1, we have that

|g(x)− g(y)| ≤ k|x− y| < |x− y|

for all distinct x, y ∈ [a, b].
Now, let x0 ∈ [a, b], and set xn+1 = g(xn) for all n ≥ 0. From above, for all

n ≥ 0,
|xn+2 − xn+1| = |g(xn+1)− g(xn)| ≤ k|xn+1 − xn|.

By repeating this, we have

|xn+2 − xn+1| ≤ kn+1|x1 − x0|

for all n. Therefore, for any m > n ≥ 0, by writing m = n+ (m− n),

|xm − xn| ≤ |xn+(m−n) − xn+(m−n−1)|
+ |xn+(m−n−1) − xn+(m−n−2)|+ · · ·+ |xn+1 − xn|

≤ (km−n−1 + km−n−2 + · · ·+ kn)|x1 − x0|.

Since k < 1, the terms in the last inequality are the Cauchy tail of the convergent
geometric series

∑
i k

i. Therefore, |xm−xn| → 0 as m,n→∞, so the sequence
(xn)n is a Cauchy sequence of real numbers. The sequence therefore must
converge to some number p.

Since g(xn) = xn+1 and g is continuous, taking limits of this equation yields
g(p) = p, so p is a fixed point of g. If q is another fixed point of g, then, from
above,

|p− q| = |g(p)− g(q)| < |p− q|,

which is a contradiction, so p is the only fixed point of g.

Proposition 1.4 (Non-convergence of fixed point methods). Let g be continu-
ously differentiable with a fixed point g(p) = p. If |g′(p)| > 1 and x0 ̸= p, then
the fixed point iteration xn+1 = g(xn) will not converge to p.

Proof. Suppose for the sake of contradiction that xn → p. Since g′ is continuous,
there is δ > 0 such that |g′(x)| > 1 when x ∈ (p− δ, p+ δ). By the Mean Value
Theorem,

xn+1 − p = g(xn)− g(p) = g′(ξn)(xn − p)

3

for some ξn between xn and p. Since xn → p, the Squeeze Theorem implies
that ξn → p as well. Therefore, there is N > 0 such that ξn ∈ (p− δ, p+ δ) for
n > N , which implies that |g′(ξn)| > 1 when n > N . Therefore,

|xn+1 − p| = |g′(ξn)||xn − p| > |xn − p|

when n > N . In particular,

|xn+1 − p| = |g′(ξn)||xn − p| > |xN+1 − p| =: ε0

for all n > N . Now, if ε0 = 0, then xN+1 = p, so xn+1 = p for all n > N ,
which contradicts the inequality above. On the other hand, if ε0 > 0, then,
since xn → p, there is M > N such that when n > M , |xn+1 − p| < ε0/2,
which also contradicts the inequality above. Therefore, in all cases, we reach a
contradiction, so xn ̸→ p.

4

2 Lecture 2

2.1 Newton’s method

Newton’s method is a fixed-point method to find the roots of a differentiable
function f(x). It is defined by the following algorithm:

xn+1 = xn −
f(xn)

f ′(xn)
. (2)

If we set g(x) = f(x)/f ′(x), then the above equation is of the form (1), so that
Newton’s method is indeed a fixed-point method.

Lemma 2.1. Suppose f is twice differentiable and f ′(p) ̸= 0. Let g(x) =
x− f(x)/f ′(x).

1. p is a fixed point of g iff f(p) = 0.

2. If f(p) = 0, then g′(p) = 0.

Proof. 1. If p is a fixed point of g, then p = g(p) = p−f(p)/f ′(p), so f(p) = 0.
Conversely, if f(p) = 0, then g(p) = p− f(p)/f ′(p) = p.

2.

g′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=

f(x)f ′′(x)

f ′(x)2
.

Since f(p) = 0, g′(p) = 0.

Theorem 2.2 (Convergence of Newton’s method). Suppose f is twice differ-
entiable, has a root at p and f ′(p) ̸= 0. For an initial value x0 sufficiently close
to p, Newton’s method converges to p.

Proof. We let g(x) = f(x)/f ′(x). Then, g is continuously differentiable, and, by
the previous lemma, p is a fixed point of g and g′(p) = 0. Therefore, there exists
δ > 0 such that, whenever |x − p| ≤ δ, |g′(x)| ≤ 1/2 < 1. By using Theorem
1.3 with k = 1/2, a = p − δ, b = p + δ, we conclude that whenever x0 ∈ [a, b],
Newton’s method converges to p.

2.2 Quadratic convergence of Newton’s method

Definition 2.3 (Order of convergence). Suppose that a sequence xn → p as
n → ∞. We say that the sequence converges with order r > 0 if there is a
constant 0 ≤ λ <∞ such that

|xn+1 − p| ≤ λ|xn − p|r (3)

for all n sufficiently large. For r = 1, we say the sequence converges linearly,
and for r = 2, we say the sequence converges quadratically.

5

Theorem 2.4 (Quadratic convergence of Newton’s method). Let f be a 3-times
continuously differentiable function with a root at p and f ′(p) ̸= 0. Suppose that
an initial value x0 is chosen sufficiently close to p so that Newton’s method
converges to p. Then, the method converges quadratically.

Proof. We let g(x) = f(x)/f ′(x). Then, g is a twice continuously differentiable
function. Using Taylor’s Theorem around p, for all n, there exists ξn between
xn and p such that

xn+1 = g(xn) = g(p) + g′(p)(xn − p) +
g′′(ξn)

2
(xn − p)2.

From Lemma 2.1, g(p) = p and g′(p) = 0, so

|xn+1 − p| = |g
′′(ξn)|
2

|xn − p|2.

There exists N > 0 such that |xn − p| ≤ 1 for all n ≥ N . Thus, for all n ≥ N ,
ξn lies in the interval [p − 1, p + 1]. Since g′′ is continuous on the closed and
bounded interval [p− 1, p+ 1], we may set

λ := max
ξ∈[p−1,p+1]

|g′′(ξ)|
2

.

Then, we conclude that

|xn+1 − p| ≤ λ|xn − p|2

when n ≥ N , so Newton’s method converges quadratically.

2.3 Secant method

In Newton’s method, we may replace f ′(x) by a backward difference approxi-
mation

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
.

Doing so gives us the secant method:

xn+1 = xn −
f(xn)

f(xn)− f(xn−1)
(xn − xn−1), (4)

where now we must provide 2 initial conditions x0, x1.

6

3 Lecture 3

3.1 Polynomial interpolation

Definition 3.1 (Lagrange polynomials). Given distinct points x0, . . . , xn, the
ith Lagrange polynomial constructed from these points is

Li(x) :=
∏
j ̸=i

x− xj

xi − xj
. (5)

Example 3.2 (Lagrange polynomial). With x0 = 0, x1 = 1, x2 = 2, we have

L0(x) =
(x− 1)(x− 2)

(0− 1)(0− 2)
,

L1(x) =
(x− 0)(x− 2)

(1− 0)(1− 2)
,

L2(x) =
(x− 0)(x− 1)

(2− 0)(2− 1)
.

Theorem 3.3 (Properties of Lagrange polynomials). Given distinct points x0,
. . . , xn, let Li be the ith Lagrange polynomial constructed from these points.
Then Li is the unique polynomial of degree n such that Li(xj) = 0 if i ̸= j and
Li(xi) = 1. Furthermore, the set {Li : i = 0, . . . , n} of Lagrange polynomials is
a basis for the space Pn of polynomials of degree at most n.

Proof. From (5), we see that Li is a product of n monomial terms (x−xj)/(xi−
xj), so it is a polynomial of degree n. Since each monomial term evaluates to 1
at xi, Li(xi) = 1. Since at least one monomial term vanishes at xj , Li(xj) = 0
when j ̸= i. Now, suppose that p is another polynomial of degree n such that
p(xi) = 1 and p(xj) = 0 when j ̸= i. From the Fundamental Theorem of
Algebra, since p has n roots at the xj , p can be factored as

p(x) = a
∏
j ̸=i

(x− xj)

for some a ∈ R. Since p(xi) = 1, inserting this into the equation above and
solving for a gives

a =
∏
j ̸=i

1

xi − xj

Therefore,

p(x) =
∏
j ̸=i

x− xj

xi − xj
= Li(x),

so Li is the unique polynomial of degree n with the above properties.
Now, we show that the set of Lagrange polynomials forms a basis of Pn.

Suppose that
n∑

j=0

cjLj(x) = 0

7

for some coefficients ci ∈ R. Evaluating at x = xi and using the properties of
the Lagrange polynomials gives ci = 0 for all i. Therefore, the Li are linearly
independent. Now, let p ∈ Pn and set

q(x) =

n∑
j=0

p(xj)Lj(x).

Then q(xi) = p(xi) for all i by construction, and q ∈ Pn. Set r = p − q. Then
r ∈ Pn and r vanishes at n + 1 distinct points x0, . . . , xn. Therefore, by the
Fundamental Theorem of Algebra, r = 0, so p = q. Thus, the Li span all of Pn,
so they are a basis of Pn.

Corollary 3.4 (Lagrange basis expansion). For the Lagrange basis {Li : i =
0, . . . , n} of Pn constructed from distinct points x0, . . . , xn, any polynomial
p ∈ Pn has the following basis expansion:

p(x) =

n∑
j=0

p(xj)Lj(x). (6)

Theorem 3.5 (Polynomial interpolation). Given finitely many samples f(x0),
f(x1), . . . , f(xn) of a function f(x) at distinct points x0, . . . , xn, there is a
unique polynomial pn(x) of degree n passing through the points:

pn(xi) = f(xi) for all i. (7)

Proof. We use the Lagrange basis polynomials Li defined by the points xi and
set

pn(x) =

n∑
j=0

f(xj)Lj(x). (8)

From the results above, pn(xi) = f(xi) for all i, pn ∈ Pn, and pn is the only
polynomial of degree n with these properties.

Definition 3.6 (Interpolating polynomial). For a function f defined at dis-
tinct points x0, . . . , xn, we call pn defined by (8) the (Lagrange form of) the
interpolating polynomial of f at the points xi.

Lemma 3.7 (Generalization of Rolle’s Theorem). Let f be an n + 1 times
differentiable function such that f(x0) = f(x1) = · · · = f(xn+1) at n+2 distinct
points x0 < x1 < · · · < xn+1. Then, there is a point ξ ∈ (x0, xn+1) such that
f (n+1)(ξ) = 0.

Proof. Applying Rolle’s Theorem to each subinterval (xi, xi+1) gives n+ 1 dis-
tinct points x1

0 < x1
1 < · · · < x1

n between x0 and xn+1 such that all f ′(x1
i) = 0.

We apply Rolle’s theorem again now to the subintervals (x1
i , x

1
i+1) to get n dis-

tinct points x2
0 < x2

1 < · · · < x2
n−1 between x0 and xn+1 such that all f ′′(x2

i) = 0.
Proceeding inductively, we eventually conclude that there are two distinct points
xn
0 < xn

1 between x0 and xn+1 such that f (n)(xn
i) = 0, and then we conclude

that there is a single point ξ ∈ (x0, xn+1) such that f (n+1)(ξ) = 0.

8

Lemma 3.8 (Polynomial derivatives). For any polynomial p of degree n,
p(n+1)(x) = 0. For any polynomial q of degree n+ 1 of the form

q(x) =

n∏
j=0

(x− xj),

q(n+1)(x) = (n+ 1)!.

Proof. Expanding p in its monomial basis gives p(x) =
∑n

i=0 cix
i for some

coefficients ci. Taking n + 1 derivatives of the right-hand side makes all the
monomial terms vanish, so we get the first result.

For the second result, expanding the product gives us a polynomial of the
form

q(x) = xn+1 + r(x)

where r is a polynomial of degree n. Taking n+ 1 derivatives of the right hand
side and using the previous result finishes the proof.

Theorem 3.9 (Error of polynomial interpolation). Let f be n + 1 times dif-
ferentiable and let p be the degree n Lagrange interpolating polynomial of f at
the distinct points x0 < x1 < · · · < xn. Then, for all x, there is a point
ξx ∈ (min(x, x0),max(x, xn)) such that

f(x) = p(x) +
f (n+1)(ξx)

(n+ 1)!

n∏
j=0

(x− xj). (9)

Proof. Fix x ̸∈ {x0, . . . , xn} and let

g(t) = f(t)− p(t)− (f(x)− p(x))

n∏
j=0

t− xj

x− xj
.

We observe that g(x) = 0 and g(xj) = 0 for j = 0, . . . , n. Therefore, by the
previous lemmas, there is ξx such that

g(n+1)(ξx) = f (n+1)(ξx)−
f(x)− p(x)∏n

j=0 x− xj
(n+ 1)! = 0.

Rearranging this equation finishes the proof.

Example 3.10 (Error estimate). We let f(x) = sin(x) and we estimate the
error between f and the linear Lagrange interpolant at the points x = 0 and
x = π/2:

p(x) = x.

Using the previous theorem,

sin(x) = x− sin(ξx)

2
(x− 0)(x− π/2).

9

Therefore, for 0 ≤ x ≤ π/2,

| sin(x)− x| ≤ 1

2
max

ξ∈[0,π/2]
| sin(ξ)||x(x− π/2)| = 1

2
x(π/2− x),

and thus

max
x∈[0,π/2]

| sin(x)− x| ≤ max
x∈π/2

1

2
x(π/2− x) =

π2

32
.

10

4 Lecture 4

4.1 Divided differences

Definition 4.1 (Newton basis polynomials). Given distinct points
x0, x2, . . . , xn−1, the Newton basis polynomials are{

N0(x) := 1,

Nj(x) :=
∏j−1

i=0 (x− xi), j = 1, . . . , n.
(10)

Proposition 4.2. The Newton basis polynomials are a basis of the space Pn of
all polynomials of degree at most n.

Proof. Suppose that
n∑

j=0

cjNj(x) = 0

for some coefficients cj . Evaluating at x = x0 makes all the terms except
c0N0(x) = c0 vanish, so c0 = 0. Then, evaluating at x = x1 makes all the
remaining terms vanish except c1n1(x) = c1(x1−x2), so c1 = 0. Repeating this
argument for the remaining terms, we conclude that all ci = 0. Therefore, the
Nj are linearly independent. Since dimPn = n+ 1 and there are n+ 1 Nj , we
conclude that the set is a basis of Pn.

Remark 4.3 (Computational cost). Consider the following computations with
respect to the Lagrange basis versus the Newton basis:

p1(x) :=

n∑
j=0

cjLj(x),

p2(x) :=

n∑
j=0

cjNj(x).

To evaluate p1(x) using the Lagrange basis, one needs (n+ 1)(n+ 2) multipli-
cations. Indeed, each Li requires n + 1 multiplications to evaluate at a point,
assuming one precomputes and stores the denominator (

∏
j ̸=i(xi−xj))

−1. Mul-
tiplying by the coefficient cj costs another multiplication, so there are n + 2
multiplications required to evaluate each term in p1(x). Since there are n + 1
terms, we conclude that p1(x) requires (n+ 1)(n+ 2) multiplications in total.

On the other hand, p2(x) only requires (n + 1)(n + 2)/2 multiplications in
total. Indeed, the Newton basis requires j multiplications to evaluate Nj(x).
Multiplying each Nj by cj adds 1 more multiplication. Thus, the total number
of multiplications required is

n∑
j=0

(j + 1) = (n+ 1)(n+ 2)/2.

11

Therefore, using the Newton basis to evaluate a polynomial of degree n requires
half of the computational cost as with the Lagrange basis, which can provide
significant increase in performance in practice.

From the previous remark, it is computationally advantageous to use the
Newton basis over the Lagrange basis. Given the values f(x0), . . . , f(xn) of a
function at distinct points x0, . . . , xn, the interpolating polynomial in terms of
the Lagrange basis is given by (8). How do we express this polynomial in terms
of the Newton basis? That is, how do we compute the coefficients cj such that

p(x) =

n∑
j=0

cjNj(x), p(xi) = f(xi) for all i?

The method of divided differences answers this question. We first illustrate with
an example.

Example 4.4 (Divided differences). Let’s construct the quadratic interpolant
using points x0, x1, x2 and values f(x0), f(x1), f(x2) in terms of the Newton
basis. We have

p(x) = c0 + c1(x− x0) + c2(x− x0)(x− x1), p(xi) = f(xi) for all i.

At x = x0, this implies that f(x0) = c0. At x = x1, we have the equation

f(x1) = f(x0) + c1(x1 − x0),

so

c1 =
f(x1)− f(x0)

x1 − x0
.

For i ̸= j, let

f [xi, xj] :=
f(xj)− f(xi)

xj − xi
.

Then c1 = f [x0, x1]. At x = x2, we have the equation

f(x2) = f(x0) + f [x0, x1](x2 − x0) + c2(x2 − x0)(x2 − x1).

Now, we subtract f(x1) from both sides and divide by x2 − x1 to get

f [x1, x2] =
f(x0)− f(x1)

x2 − x1
+ f [x0, x1]

x2 − x0

x2 − x1
+ c2(x2 − x0)

= −f [x0, x1]
x1 − x0

x2 − x1
+ f [x0, x1]

x2 − x0

x2 − x1
+ c2(x2 − x0)

= f [x0, x1] + c2(x2 − x0).

Therefore,

c2 =
f [x1, x2]− f [x0, x1]

x2 − x0
.

12

Motivated by this, for distinct i, j, k, we set

f [xi, xj , xk] :=
f [xj , xk]− f [xi, xj]

xk − xi
,

so that c2 = f [x0, x1, x2]. In conclusion, the coefficients with respect to the
Newton basis are

p(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

This example generalizes to degree n as follows.

Theorem 4.5 (Newton coefficients). For distinct points x0, x1, . . . , xn and a
function f , we recursively define

f [xi] := f(xi), 0 ≤ i ≤ n, (11)

and

f [xi, . . . , xi+k] :=
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi
,

0 ≤ i ≤ n− 1, 1 ≤ k ≤ n− i. (12)

Then, for the interpolating polynomial p to f at the points xi, its coefficients in
Newton form are

p(x) =

n∑
j=0

f [x0, . . . , xj]Nj(x). (13)

Example 4.6 (Newton coefficients). For n = 3, we have

f [x0, x1, x2, x3] =
1

x3 − x0
(f [x1, x2, x3]− f [x0, x1, x2]),

f [x0, x1, x2] =
1

x2 − x0
(f [x1, x2]− f [x0, x1]),

f [x1, x2, x3] =
1

x3 − x1
(f [x2, x3]− f [x1, x2]),

f [x0, x1] =
1

x1 − x0
(f [x1]− f [x0]),

f [x1, x2] =
1

x2 − x1
(f [x2]− f [x1]),

f [x2, x3] =
1

x3 − x2
(f [x3]− f [x2]),

so

p(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2).

13

The following table let’s us easily build up the divided difference coefficients
starting from the function values f(xi). To be explicit, we give the table for
n = 3.

0 1 2 3
0 f(x0) f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
1 f(x1) f [x1, x2] f [x1, x2, x3]
2 f(x2) f [x2, x3]
3 f(x3)

The entries in the table are computed one column at a time from left to right.
In column 1 onward, an entry in the (i, j) position of the table is computed from
by using the entries in positions (i, j − 1) and (i+ 1, j − 1).

4.2 Hermite interpolation

Suppose that we want to find a polynomial p(x) of minimal degree that inter-
polates a function f and its derivative f ′ at a finite set of points xi:

p(xi) = f(xi), p′(xi) = f ′(xi) for all i.

Such a polynomial is called a Hermite interpolating polynomial. It can be
computed using the method of divided differences. We first explain with an
example.

Example 4.7 (Hermite polynomial). We desire a polynomial p(x) that inter-
polates f(x0) and f ′(x0). Since we have 2 constraints, we consider a polynomial
of degree 1:

p(x) = c0 + c1x.

We now compute the coefficients c0, c1 that satisfy the constraints. First,
p′(x0) = c1, so we set c1 = f ′(x0). Then, p(x0) = c0 + f ′(x0)x0, so we set

c0 = f(x0)− f ′(x0)x0.

Thus, after substituting and rearranging,

p(x) = f(x0) + f ′(x0)(x− x0).

Notice that, in the previous example, the interpolating polynomial is in
Newton form with coefficients f(x0) and f ′(x0):

p(x) = f(x0)N0(x) + f ′(x0)N1(x).

In fact, by modifying the divided difference table, we can use the divided differ-
ence algorithm to compute the coefficients of the Hermite polynomial as follows.

14

For the example above, we set z0 = z1 = x0. Then, we construct the divided
difference table using the f(zi), values:

0 1
0 x0 f(z0) f [z0, z1]
1 x0 f(z1)

However, since z0 = z1 = x0, f(z0) = f(z1), so the difference f [z0, z1] is unde-
fined. In this case, we use the derivative f ′(z0):

f [zi, zj] := f ′(zi) if zi = zj . (14)

From another viewpoint, we recall that the divided difference is formally defined
as

f [zi, zj] =
f(zj)− f(zi)

zj − zi
,

so that in the limit zj → zi, we recover the derivative of f at zi:

lim
zj→zi

f [zi, zj] = f ′(zi).

In the general case with n+1 points x0, . . . , xn where we wish to interpolate
the point values f(xi) and the derivatives f ′(xi), the above procedure generalizes
to the following table:

0 1 · · · 2n+ 2
0 x0 f(z0) f [z0, z1] · · · f [z0, . . . , z2n+1]
1 x0 f(z1) f [z1, z2] · · ·
2 x1 f(z2) f [z2, z3] · · ·
3 x1 f(z3) f [z3, z4] · · ·
...

...
...

... · · ·
2n xn f(z2n) f [z2n, z2n+1]

2n+ 1 xn f(z2n+1)

where we use (14) whenever zi = zj . The Hermite interpolating polynomial in
Newton form is then

p(x) =

2n+1∑
j=0

f [z0, . . . , zj]Nj(x). (15)

We remark that the Hermite interpolating polynomial belongs to P2n+1 to sat-
isfy the 2n+ 2 constraints.

We can also compute the Hermite interpolating polynomial using the La-
grange basis polynomials Li. The idea is to write the polynomial as

p(x) =

n∑
j=0

f(xj)Hj(x) +

n∑
j=0

f ′(xj)Ĥj(x), (16)

15

where Hj and Ĥj are polynomials in P2n+1 such that

Hj(xi) = δij , H ′
j(xi) = 0,

Ĥj(xi) = 0, Ĥ ′
j(xi) = δij ,

(17)

and δij is the Kronecker delta.

Lemma 4.8. If a polynomial p ∈ Pn satisfies p(x0) = 0 and p′(x0) = 0, then
there is a polynomial q ∈ Pn−2 such that

p(x) = (x− x0)
2q(x).

Proof. From the Fundamental Theorem of Algebra, p(x) = (x − x0)r(x) for
some r ∈ Pn−1. Then, p′(x) = r(x) + (x − x0)r

′(x), so p′(x0) = r(x0) = 0.
Thus, by the Fundamental Theorem of Algebra again, there is q ∈ Pn−2 such
that r(x) = (x− x0)q(x). Therefore, p(x) = (x− x0)

2q(x) as desired.

Theorem 4.9 (Lagrange form of Hermite interpolating polynomial). The La-
grange form of the Hermite interpolating polynomial to the function f interpo-
lating the values f(x0),. . . ,f(xn) and derivatives f ′(x0),. . . ,f

′(xn) is (16) with
coefficients {

Hj(x) = Lj(x)
2(1− 2L′

j(xj)(x− xj)),

Ĥj(x) = Lj(x)
2(x− xj),

(18)

where the Lj are the Lagrange basis polynomials constructed from the points
x0,. . . ,xn.

Proof. Following the idea in (17), we seek Hj ∈ P2n+1 with the aforementioned
properties. We show that necessarily the Hj must be of the form (18).

From the Fundamental Theorem of Algebra, Hj must be of the form

Hj(x) = qj(x)
∏
i ̸=j

(x− xi)

for some qj ∈ Pn+1. By multiplying and dividing by
∏

i ̸=j(xj−xi) and redefining
qj , Hj is of the form

Hj(x) = qj(x)Lj(x).

We observe that L′
j(xi) ̸= 0 for all i ̸= j. Therefore,

H ′
j(xi) = q′j(xi)Lj(xi) + qj(xi)L

′
j(xi) = qj(xi)L

′
j(xi) = 0

for all i ̸= j, so qj(xi) = 0 for all i ̸= j. By repeating the previous argument,
we conclude that qj must also be of the form

qj(x) = Lj(x)rj(x)

for some rj ∈ P1. Thus,
Hj(x) = L2

j (x)rj(x).

16

We desire also that Hj(xj) = 1, so rj(xj) = 1. Thus, from the Fundamental
Theorem of Algebra, there is a constant cj such that

rj(x) = 1 + cj(x− xj).

We also require that H ′
j(xj) = 0, so

H ′
j(xj) = 2Lj(xj)L

′
j(xj)rj(xj) + L2

j (xj)r
′
j(xj) = 2L′

j(xj) + cj = 0.

Thus, cj = −2L′
j(xj), hence

Hj(x) = L2
j (x)(1− 2L′

j(xj)(x− xj))

as desired.
Now, we do a similar procedure for Ĥj . Since Ĥj(xi) = 0 for all i, we must

have that
Ĥj(x) = Lj(x)(x− xj)sj(x)

for some sj ∈ Pn. Since Ĥ ′
j(xi) = 0 for i ̸= j, we have that

Ĥ ′
j(xi) = L′

j(xi)(xi − xj)sj(xi) + Lj(xi)sj(xi) + Lj(xi)(xi − xj)s
′
j(xi)

= L′
j(xi)(xi − xj)sj(xi)

= 0.

Thus, sj(xi) = 0 for all i ̸= j. Hence, there is a constant aj such that

Ĥj(x) = ajL
2
j (x)(x− xj).

Thus,
Ĥ ′

j(x) = 2ajL
′
j(x)(x− xj) + ajL

2
j (x).

Since Ĥ ′
j(xj) = 1, this implies that aj = 1, which completes the proof.

17

5 Lecture 5

5.1 Cubic splines

Definition 5.1 (Cubic spline). Let a = x0 < x1 < · · · < xn = b. The
cubic spline interpolating a function f at the points xj is the piecewise cubic
polynomial S with the following properties:

1. On each subinterval [xj , xj+1], S is a cubic polynomial. We denote the
restriction of S to this subinterval by Sj .

2. The pieces {Sj}n−1
j=0 interpolate f at the nodes:

Sj(xj) = f(xj) and Sj(xj+1) = f(xj+1) for all j. (19)

This implies that S is continuous on the entire interval [a, b], since
Sj(xj+1) = Sj+1(xj+1) for all j.

3. The first and second derivatives of S are continuous on [a, b], i.e.{
S′
j(xj+1) = S′

j+1(xj+1),

S′′
j (xj+1) = S′′

j+1(xj+1)
(20)

for all j = 0, . . . , n− 2.

4. S has natural boundary conditions:

S′′(a) = S′′(b) = 0. (21)

Example 5.2 (Cubic spline). Let’s construct the cubic spline passing through
the points (x0, y0), (x1, y1), and (x2, y2) where x0 < x1 < x2. Since there
are 3 points, n = 2, so there are two pieces S0 and S1. Since S′′

0 and S′′
1 are

degree 1 polynomials, let’s expand them in terms of the Lagrange basis on their
respective subintervals:

S′′
0 (x) = S′′

0 (x0)
x− x1

x0 − x1
+ S′′

0 (x1)
x− x0

x1 − x0
,

S′′
1 (x) = S′′

1 (x1)
x− x2

x1 − x2
+ S′′

1 (x2)
x− x1

x2 − x1
.

Now, let’s integrate both functions on their respective subintervals starting
from x1:

S′
0(x) = S′

0(x1) + S′′
0 (x0)

(x− x1)
2

2(x0 − x1)
+ S′′

0 (x1)
(x− x0)

2 − (x1 − x0)
2

2(x1 − x0)
,

S′
1(x) = S′

1(x1) + S′′
1 (x1)

(x− x2)
2 − (x1 − x2)

2

2(x1 − x2)
+ S′′

1 (x2)
(x− x1)

2

2(x2 − x1)
.

18

Then, we integrate again, also from x1:

S0(x) = S0(x1) + S′
0(x1)(x− x1) + S′′

0 (x0)
(x− x1)

3

6(x0 − x1)

+ S′′
0 (x1)

(x− x0)
3 − (x1 − x0)

3 − 3(x1 − x0)
2(x− x1)

6(x1 − x0)
,

S1(x) = S1(x1) + S′
1(x1)(x− x1)

+ S′′
1 (x1)

(x− x2)
3 − (x1 − x2)

3 − 3(x1 − x2)
2(x− x1)

6(x1 − x2)

+ S′′
1 (x2)

(x− x1)
3

6(x2 − x1)
.

Now, we require S0(x0) = y0, S0(x1) = S1(x1) = y1, and S1(x2) = y2. We
also require S′

0(x1) = S′
1(x1), S

′′
0 (x1) = S′′

1 (x1), S
′′
0 (x0) = 0, and S′′

1 (x2) = 0.
Inserting this above and evaluating the first equation at x0 and the second at
x2 gives 

y0 = y1 + S′
0(x1)(x0 − x1) + S′′

0 (x1)
(x1 − x0)

2

2
,

y2 = y1 + S′
0(x1)(x2 − x1) + S′′

0 (x1)
(x1 − x2)

2

2
.

This is a square linear system in the unknowns S′
0(x1) and S′′

0 (x1). Sub-
tracting each equation by y1 and dividing by the respective coefficient in front
of S′

0(x1) gives 
[y0, y1] = S′

0(x1) + S′′
0 (x1)

(x1 − x0)

2
,

[y1, y2] = S′
0(x1) + S′′

0 (x1)
(x2 − x1)

2
,

where [yi, yj] := (yi − yj)/(xi − xj) is the divided difference of yi and yj . Sub-
tracting the first equation from the second and dividing by (x2 − x0)/2 gives

S′′
0 (x1) = 2[y0, y1, y2] = S′′

1 (x1),

where [y0, y1, y2] := ([y1, y2]− [y0, y1])/(x2 − x0) is the divided difference of the
yi’s. If we now multiply the first equation by x2 − x1, the second by x1 − x0,
and subtract the second from the first, we get

S′
0(x1) =

[y0, y1](x2 − x1)− [y1, y2](x1 − x0)

x2 − x0
= S′

1(x1).

We have now found the unknowns S′
0(x1) and S′′

0 (x1) in terms of the data
(xi, yi). We can use the Taylor expansions of the polynomials Sj from x1 to

19

give their formulas in terms of these coefficients:

S0(x) = y1 +
[y0, y1](x2 − x1)− [y1, y2](x1 − x0)

x2 − x0
(x− x1)

+ [y0, y1, y2](x− x1)
2 +

S
(3)
0 (x1)

6
(x− x1)

3,

S1(x) = y1 +
[y0, y1](x2 − x1)− [y1, y2](x1 − x0)

x2 − x0
(x− x1)

+ [y0, y1, y2](x− x1)
2 +

S
(3)
1 (x1)

6
(x− x1)

3,

To compute S
(3)
0 (x1) and S

(3)
1 (x1), we return to the very first equations in

the example and take derivatives, applying the boundary conditions and the
previous results:

S
(3)
0 (x1) =

S′′
0 (x1)

x1 − x0
=

2

x1 − x0
[y0, y1, y2],

S
(3)
1 (x1) =

S′′
1 (x1)

x1 − x2
=

2

x1 − x2
[y0, y1, y2].

In conclusion, the general form for a piecewise cubic spline passing through 3
points is

S0(x) = y1 +
[y0, y1](x2 − x1)− [y1, y2](x1 − x0)

x2 − x0
(x− x1)

+ [y0, y1, y2](x− x1)
2

(
1− 1

3

x1 − x

x1 − x0

)
,

S1(x) = y1 +
[y0, y1](x2 − x1)− [y1, y2](x1 − x0)

x2 − x0
(x− x1)

+ [y0, y1, y2](x− x1)
2

(
1− 1

3

x− x1

x2 − x1

)
,

where S0 is defined on [x0, x1] and S1is defined on [x1, x2].

Remark 5.3. The procedure in the previous example does not easily generalize
to more nodes. In this case, a more straightforward procedure involves simply
expanding each piece Sj in some basis and setting up a large linear system
imposed by the constraints. Motivated by the previous example where the final
answer was expressed in terms of powers of x − x1, we propose to use the
following basis expansion for each Sj on [xj , xj+1]:

Sj(x) = aj + bj(x− xj) + cj(x− xj)
2 + dj(x− xj)

3.

20

In fact, this is just a Taylor expansion of each Sj about xj , so

aj := Sj(xj),

bj := S′
j(xj),

cj :=
S′′
j (xj)

2
,

dj :=
S
(3)
j (xj)

6
.

The compatibility conditions then become

yj+1 = Sj+1(xj+1) = Sj(xj+1)

= aj + bj(xj+1 − xj) + cj(xj+1 − xj)
2 + dj(xj+1 − xj)

3,

bj+1 = S′
j+1(xj+1) = S′

j(xj+1)

= bj + 2cj(xj+1 − xj) + 3dj(xj+1 − xj)
2,

2cj+1 = S′′
j+1(xj+1) = S′′

j (xj+1) = 2cj + 6dj(xj+1 − xj),

aj = Sj(xj) = yj ,

c0 = S′′
0 (x0) = 0,

S′′
n−1(xn) = 0 = 2cn−1 + 6dn−1(xn − xn−1).

These equations lead to a large linear system that is no longer easily solvable
by hand, but the system is simple to set up for a particular n and given values
(xj , yj).

5.2 Numerical differentiation

We recall the limit definition of a derivative:

f ′(x0) := lim
h→0

f(x0 + h)− f(x0)

h
. (22)

We expect that, for h small enough, the divided difference on the right-hand
side is a good approximation to f ′(x0).

Theorem 5.4 (First-order numerical differentiation). If f is twice differentiable
on an interval (x0 − δ, x0 + δ) and f ′′ is bounded on that interval, then for all
h small enough∣∣∣∣f ′(x0)−

f(x0 + h)− f(x0)

h

∣∣∣∣ ≤ sup
x∈(x0−δ,x0+δ)

∣∣∣∣f ′′(ξ)

2

∣∣∣∣h. (23)

Proof. We perform a Taylor expansion near x0:

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(ξh)

where ξh is between x0 and x0 + h and h is small enough so x0 + h ∈ (x0 −
δ, x0 + δ). Rearranging, taking absolute values, and taking a supremum over
ξh ∈ (x0 − δ, x0 + δ) finishes the proof.

21

Thus, the numerical differentiation formula above is only first-order accurate.
To achieve higher-order accurate formulas, we can use more points along with
Taylor expansions or Lagrange expansions.

Example 5.5 (Lagrange expansion). Consider 3 points x0, x1 = x0 + h, x2 =
x0 + 2h. The Lagrange polynomial interpolating a smooth function f through
these points is

p(x) = f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)

+ f(x1)
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ f(x2)

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
.

From Theorem 3.9, for all x ∈ (x0, x2), there is a point ξx ∈ (x0, x2) such that

f(x) = p(x) +
f (3)(ξx)

6
(x− x0)(x− x1)(x− x2).

Since f and p are smooth, we deduce that the mapping x 7→ f (3)(ξx) is
smooth on (x0, x1) and (x1, x2). Then, we may differentiate both sides to get

f ′(x) = p′(x) +
d

dx

f (3)(ξx)

6
(x− x0)(x− x1)(x− x2)

+
f (3)(ξx)

6

d

dx
{(x− x0)(x− x1)(x− x2)} .

Evaluating at x = x0 and substituting for h gives

f ′(x0) = f(x0)
−3h

(−h)(−2h)
+ f(x1)

−2h
h(−h)

+ f(x2)
−h

(2h)h
+

f (3)(ξ0)

6
(−h)(−2h).

Rearranging, we arrive at a differentiation formula that is second-order accurate:

f ′(x0) =
−3
2h

f(x0) +
2

h
f(x0 + h)− 1

2h
f(x0 + 2h) +

f (3)(ξ0)

3
h2. (24)

If we evaluate at x1 instead, we get another formula:

f ′(x1) =
f(x1 + h)− f(x1 − h)

2h
− f (3)(ξ1)

6
h2. (25)

We can also prove that the differentiation formulas are second-order accurate
by using Taylor’s theorem. We prove one of them and leave the other as an
exercise to the reader.

Theorem 5.6 (Second-order differentiation formula). The differentiation for-
mula (25) is second-order accurate for sufficiently smooth functions.

22

Proof. We take h > 0 and expand in Taylor series about x1:
f(x1 + h) = f(x1) + hf ′(x1) +

h2

2
f ′′(x1) +

f (3)(ξh,+)

6
h3,

f(x1 − h) = f(x1)− hf ′(x1) +
h2

2
f ′′(x1)−

f (3)(ξh,−)

6
h3,

where ξh,+ ∈ (x1, x1+h) and ξh,− ∈ (x1−h, x1). We subtract the two equations
and rearrange:

f(x1 + h)− f(x1 − h)

2h
− f ′(x1) =

f (3)(ξh,+) + f (3)(ξh,−)

6
h2.

Now, assuming that f is smooth enough where its 3rd derivative is bounded
near x1, by taking absolute values, we can bound the coefficient in front of the
h2 term on the right-hand side by a constant independent of h. This completes
the proof.

To summarize, using Lagrange polynomials is an effective way to discover
differentiation formulas, and using Taylor’s Theorem is an efficient way to prove
that the methods are indeed accurate, provided that the functions involved are
sufficiently smooth.

5.3 Richardson extrapolation

Sometimes, one can use a differentiation formula evaluated at multiple values
of h to improve accuracy. This process is called Richardson extrapolation.

For example, consider the first-order formula to approximate f ′(x0):

f ′(x0) =
f(x0 + h)− f(x0)

h
+O(h).

Denote the left-hand side byM and the differentiation formula on the right-hand
side by N(h).

Then, suppose that we can expand the error M −N(h) as a power series:

M −N(h) =

∞∑
j=1

Kjh
j = K1h+K2h

2 + · · · .

Then,
2(M −N(h/2)) = K1h+ 2K2(h/2)

2 + · · · .
Subtracting these equations eliminates the O(h) term:

M − (2N(h/2)−N(h)) = O(h2).

We see that, by reusing the first-order accurate formula at h and h/2 and
combining the results in a clever way, we formally achieve a second-order accu-
rate formula:

f ′(x0) = 2
f(x0 + h/2)− f(x0)

h/2
− f(x0 + h)− f(x0)

h

=
−3f(x0) + 4f(x0 + h/2)− f(x0 + h)

h
.

(26)

23

Notice that, in this particular case, we re-derive (24) but with h/2 instead
of h. However, by using more evaluations with different h’s and some clever
algebraic manipulations, even higher-order methods can be derived.

24

6 Lecture 6

6.1 Numerical integration

Example 6.1 (Trapezoid rule). Consider a continuous function f defined on
an interval [x0, x1]. Consider the Lagrange interpolating polynomial

p(x) = f(x0)
x− x1

x0 − x1
+ f(x1)

x− x0

x1 − x0
.

Suppose that f is twice continuously differentiable. We recall that, for x ∈
(x0, x1), there is ξx ∈ (x0, x1) such that

f(x) = p(x) +
f ′′(ξx)

2
(x− x0)(x− x1).

Since f and p are smooth, we conclude that the mapping x 7→ f ′′(ξx) is contin-
uous on (x0, x1). Then, we integrate both sides:∫ x1

x0

f(x) dx =
f(x0) + f(x1)

2
(x1 − x0) +

∫ x1

x0

f ′′(ξx)

2
(x− x0)(x− x1) dx.

The first term on the right is a formula for approximating the integral of f
called the Trapezoid rule. Such a rule is called a quadrature rule. To bound
the error of the quadrature rule, we subtract it from both sides of the previous
equation and take absolute values:∣∣∣∣∫ x1

x0

f(x) dx− f(x0) + f(x1)

2
(x1 − x0)

∣∣∣∣ ≤ 1

2

∫ x1

x0

|f ′′(ξx)|(x− x0)(x1 − x) dx.

Since f ′′ is continuous on the closed and bounded interval [x0, x1],∣∣∣∣∫ x1

x0

f(x) dx− f(x0) + f(x1)

2
(x1 − x0)

∣∣∣∣
≤ 1

2
max

ξ∈[x0,x1]
|f ′′(ξ)|

∫ x1

x0

(x− x0)(x1 − x) dx

=
1

12
max

ξ∈[x0,x1]
|f ′′(ξ)|(x1 − x0)

3.

Thus, if we let h := x1 − x0, we see that the Trapezoid rule is formally third
order accurate at approximating the integral of f .

Similar to numerical differentiation, we used the Lagrange interpolating
polynomial to derive a quadrature formula. Just like the previous section, we
can also use Taylor’s theorem to prove that the quadrature rule is third order
accurate.

Theorem 6.2 (Trapezoid rule). The trapezoid rule∫ x0+h

x0

f(x) dx ≈ h

2
(f(x0) + f(x0 + h)) (27)

25

provides a third order accurate approximation to the integral of a smooth func-
tion.

Proof. We take a Taylor expansion of f about x0 to x ∈ (x0, x0 + h):

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(ξx)

2
(x− x0)

2.

Then, we integrate both sides:∫ x0+h

x0

f(x) dx = hf(x0) +
h2

2
f ′(x0) +

1

2

∫ x0+h

x0

f ′′(ξx)(x− x0)
2 dx.

Now, we replace f ′(x0) by the following differentiation formula from the previous
section:

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(ξ0).

Inserting this above gives∫ x0+h

x0

f(x) dx =
h

2
(f(x0) + f(x0 + h))

− h3

4
f ′′(ξ0) +

1

2

∫ x0+h

x0

f ′′(ξx)(x− x0)
2 dx.

Since f ′′ is bounded on [x0, x0+h], the integral on the right is O(h3). Therefore,
the error term on the right is O(h3) as desired.

Higher-order quadrature rules can be derived by using higher degree La-
grange interpolants.

Example 6.3 (Simpson’s rule). Let xi = x0 + ih with h > 0 and i = 0, 1, 2.
Using the Lagrange interpolating polynomial for these points:

f(x) = f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+

f(x2)
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
+

f (3)(ξx)

6
(x− x0)(x− x1)(x− x2).

By integrating over [x0, x2] and substituting for h, we arrive at Simpson’s rule:∫ x0+2h

x0

f(x) dx =
h

3

(
f(x0) + 4f(x0 + h) + f(x0 + 2h)

)
+O(h4). (28)

In general, for n + 1 evenly spaced points xi = x0 + ih with i = 0, . . . , n, a
quadrature rule for integrating smooth functions on [x0, xn] is given by∫ x0+nh

x0

f(x) dx =

n∑
j=0

wj,hf(x0 + jh) +O(hn+1). (29)

26

Here, the O(hn+1) term depends on f having a bounded (n+1)st derivative on
[x0, xn], and the weights wj,j are

wj,h :=

∫ x0+nh

x0

Lj(x)dx, (30)

where Lj is the jth Lagrange polynomial of degree n associated to the points
xj .

6.2 Composite numerical integration

The error for the quadrature rules from the previous subsection scales with the
length of the interval h that we integrate over. Larger intervals [a, b] lead to
larger errors. To deal with this, we can first subdivide the interval [a, b] that
we integrate over into equal subintervals a = z0 < z1 < · · · < zm = b, where
zi = a+ ih, h = (b− a)/m. Then, on each subinterval [zi, zi+1] of length h, we
use a quadrature rule with n+ 1 points xij = zi + jh/n for j = 0, . . . , n.

Example 6.4 (Composite trapezoid rule). Integrating a smooth function f(x)
on [a, b] using the trapezoid rule on 2 subintervals:∫ b

a

f(x) dx =

∫ a+h

a

f(x) dx+

∫ a+2h

a+h

f(x) dx

=
h

2

(
f(a) + f(a+ h)

)
+

h

2

(
f(a+ h) + f(a+ 2h)

)
+O(h3)

=
h

2

(
f(a) + 2f(a+ h) + f(a+ 2h)

)
+O

(
h3
)
.

In comparison, for the standard trapezoid rule on the interval [a, b] = [a, a+2h]:∫ b

a

f(x) dx = h(f(a) + f(a+ 2h)) +O((2h)3),

which yields an error that is 8 times larger.
In general, for m equally spaced subintervals, the composite trapezoid rule

over [a, b] = [a, a+mh] reads∫ b

a

f(x) dx =
h

2

(
f(a) + 2

m−1∑
j=1

f(a+ jh) + f(b)

)
+O(h3),

with an error m3 times smaller than the standard trapezoid rule on [a, b].

27

7 Lecture 7

7.1 Gaussian quadrature

In the previous sections, we developed quadrature rules of the form∫ b

a

f(x) dx ≈
n∑

i=0

wif(xi),

where xi := a+ i(b− a)/n and the wi are chosen such that the formula is exact
for polynomials up to degree n. By using a different set of n points and weights,
we can achieve a quadrature rule that is accurate for polynomials up to degree
2n+ 1. This is known as Gaussian quadrature.

Example 7.1 (Gauss quadrature for n = 1). On the interval [−1, 1], we seek
points x0, x1 and weights w0, w1 such that the quadrature rule above is exact
for polynomials up to degree 3. Inserting a = −1, b = 1, f(x) = 1, f(x) = x,
f(x) = x2, and f(x) = x3 above yields

2 =

∫ 1

−1

1 dx = w0 + w1,

0 =

∫ 1

−1

x dx = w0x0 + w1x1,

2/3 =

∫ 1

−1

x2 dx = w0x
2
0 + w1x

2
1,

0 =

∫ 1

−1

x3 dx = w0x
3
0 + w1x

3
1.

This is a nonlinear system of equations in 4 unknowns w0, w1, x0, x1. We can
solve it by hand as follows.

From the second equation, we have w0x0 = −w1x1. Inserting this in to the
4th equation implies

w0x0(x
2
0 − x2

1) = 0.

If w0 = 0, then the second equation implies that w1x1 = 0, which then con-
tradicts the third equation, so w0 ̸= 0. If x0 = 0, then we reach the same
contradiction, so x0 ̸= 0. Therefore, x2

0 = x2
1, which means that x0 = x1 or

x0 = −x1. If x0 = x1, the second equation implies w0 = −w1, which con-
tradicts the first. Therefore, x0 = −x1, so the second equation implies that
w0 = w1. Then, from the first equation, we conclude that w0 = w1 = 1. The
third equation then reduces to

2/3 = 2x2
0,

so x0 = ±1/
√
3. We choose x0 = −1/

√
3, so that x1 = 1/

√
3. In conclusion,

the following weights and points give exact quadrature up to degree 3:

w0 = w1 = 1, x0 = −1/
√
3, x1 = 1/

√
3.

28

The procedure from the previous example does not scale to n > 1, so we need
a different way to compute the weights and points. The Legendre polynomials
help with this.

Definition 7.2 (Legendre polynomials). The Legendre polynomials are the
family of polynomials {pn}n≥0 on [−1, 1] characterized by the following proper-
ties:

1. For all n, pn is a degree n polynomial such that pn(1) = 1.

2. For all m ̸= n, ∫ 1

−1

pm(x)pn(x) dx = 0.

Example 7.3 (Legendre polynomials). The first few Legendre polynomials are
as follows: 

p0(x) = 1,

p1(x) = x,

p2(x) =
1

2
(3x2 − 1).

Proposition 7.4. The first n+ 1 Legendre polynomials are a basis for polyno-
mials of degree at most n.

Proof. Suppose that
n∑

i=0

cipi = 0.

Then, by multiplying by pj and integrating over [−1, 1], we conclude that

cj

∫ 1

−1

pj(x)
2 dx = 0.

Since pj(1) = 1, pj ̸= 0, so we must have that cj = 0. Since j is arbitrary,
{p0, . . . , pn} is a linearly independent set of n + 1 polynomials of degree at
most n. Since the dimension of this space is equal to the number of Legendre
polynomials in the set, we are done.

Given p0, . . . , pn−1, one can compute pn by expanding it in the following
basis:

pn(x) =

n−1∑
i=0

aipi(x) + anx
n

and obtaining an (n+ 1)× (n+ 1) system of linear equations by requiring
∫ 1

−1

pj(x)pn(x) dx = 0 for all 0 ≤ j ≤ n− 1,

pn(1) = 1.

29

Example 7.5. Given p0, p1, and p2 above, we compute p3 as

p3(x) = a0p0(x) + a1p1(x) + a2px(x) + a3x
3.

Now, the constraints read

0 =

∫ 1

−1

p0(x)p3(x) dx = a0

∫ 1

−1

p0(x)
2 dx,

0 =

∫ 1

−1

p1(x)p3(x) dx = a1

∫ 1

−1

p1(x)
2 dx+ a3

∫ 1

−1

p1(x)x
3 dx,

0 =

∫ 1

−1

p2(x)p3(x) dx = a2

∫ 1

−1

p2(x)
2 dx

1 = p3(1) = a0 + a1 + a2 + a3.

Thus, we see that a0 = 0, a2 = 0, so we have the following linear system for a1
and a3: {

2/3a1 + 2/5a3 = 0,

a1 + a3 = 1.

This can be easily solved, so we conclude that p3(x) = a1p1(x) + a3x
3.

There exists a general formula for pn, but its derivation is beyond the scope
of these notes. Here’s how they relate to Gaussian quadrature. We will not
cover the proofs.

Lemma 7.6 (Roots of Legendre polynomials). Let pn be the nth Legendre poly-
nomial. Then, pn has n distinct roots in the interval (−1, 1).

Theorem 7.7 (Gaussian quadrature via Legendre polynomials). For n ≥ 0, let
x0, . . . , xn be the roots of the n+ 1 Legendre polynomial pn+1. Let

wi :=
2

(1− x2
i)p

′
n+1(xi)2

.

Then, the Gauss quadrature rule∫ 1

−1

f(x) dx ≈
n∑

i=0

wif(xi)

is exact for polynomials up to degree 2n+ 1.

There are tabulations of Gauss quadrature weights and points on [−1, 1]
online. To obtain the corresponding quadrature rule on an arbitrary interval
[a, b], we can use the following change of variables:

x =
a+ b

2
+

b− a

2
x̂, dx =

b− a

2
dx̂.

30

That is, ∫ b

a

f(x) dx =

∫ 1

−1

f

(
a+ b

2
+

b− a

2
x̂

)
b− a

2
dx̂

≈
n∑

i=0

b− a

2
ŵif

(
a+ b

2
+

b− a

2
x̂i

)

=

n∑
i=0

wif(xi),

where ŵi and x̂i are the Gauss quadrature weights and points on the interval
[−1, 1] and the corrsponding weights and points on [a, b] are

wi =
b− a

2
ŵi, xi =

a+ b

2
+

b− a

2
x̂i.

7.2 Euler’s method for ordinary differential equations (O-
DEs)

We now wish to develop numerical methods for solving ODE problems of the
form

y′(t) = f(t, y(t)), y(0) = y0, (31)

where f(t, y) is a given function, y0 is a given initial condition, and the unknown
is y(t). We recall some ODE theory concerning existence and uniqueness of
solutions to the above problem.

Definition 7.8 (Lipschitz). A function of two real variables f(t, y) is Lipschitz
with respect to y if there is a constant C > 0 such that for all t, y1, y2,

|f(t, y1)− f(t, y2)| ≤ C|y1 − y2|.

We call C a Lipschitz constant of f .

Proposition 7.9. If f(t, y) is Lipschitz with respect to y, it is uniformly con-
tinuous with respect to y.

Proof. Let ε > 0, and let C > 0 be a Lipschitz constant of f . Then, for each
t, y0, when |y − y0| < δ := ε/C,

|f(t, y)− f(t, y0)| ≤ C|y − y0| < ε.

Proposition 7.10. If f(t, y) is differentiable with respect to y and there is a
constant C such that |∂yf(t, y)| ≤ C for all t, y, then f is uniformly Lipschitz
with respect to y.

Proof. Fix t, y1, y2. Applying the Mean Value Theorem in y, there is some
y3 ∈ (y1, y2) such that

|f(t, y1)− f(t, y2)| = |∂yf(t, y3)||y1 − y2| ≤ C|y1 − y2|.

Since C is independent of t, y1, and y2, we are done.

31

Example 7.11. The function f(t, y) = t−y2+1 is Lipschitz in y, but f(t, y) =√
y is not.

Theorem 7.12 (Picard–Lindelöf). If f is continuous with respect to t and
uniformly Lipschitz with respect to y, then the ODE problem (31) has a unique
solution.

If a problem does not have a solution at all, it makes no sense to develop
numerical methods for it. If a problem has a solution, but it is not unique, then
additional information must be supplied to choose a unique solution to approx-
imate. There is one other additional property that determines how feasible it is
to approximate a solution to an ODE problem. We discuss this now.

Definition 7.13 (Stability). Consider the ODE problem (31) and the following
slightly perturbed problem:

z′(t) = f(t, z(t)) + ε, z(0) = y0 + δ.

Suppose that z(t) and y(t) belong to a space of function with a norm ∥·∥ defined
on it. We say that (31) is stable if, whenever ε and δ are small, the difference
∥y − z∥ is small.

That is, small perturbations in the function f or the initial data y0 do not
give vastly different solutions to the ODE. If the ODE problem has a unique
solution and is stable, we say the problem is well-posed. Well-posed problems
are much easier to solve than ill-posed ones. We will only concern ourselves
with well-posed problems in this course.

Now, assuming we have a well-posed problem, how do we numerically com-
pute the solution to (31)? A simple idea is to replace the derivatives in (31) with
finite differences that we learned from a previous section. By using forward dif-
ferences, we obtain the forward Euler method, also known as the explicit Euler
method.

Suppose we want to solve the ODE problem from t = 0 until some final time
tF . We let h = tF /N denote the timestep size, and we set tn = nh. A forward
difference of y′(t) at t = tn reads

y′(tn) ≈
y(tn+1)− y(tn)

h
.

Motivated by this, we consider the following algebraic procedure. We start with
the initial condition y0. Then, for n ≥ 0, after obtaining yn, to obtain yn+1, we
solve

yn+1 − yn
h

= f(tn, yn).

Or, after rearranging, we get the following explicit Euler update:

yn+1 = yn + hf(tn, yn). (32)

32

Whether the computed values yn accurately approximate y(tn) depends on
the function f and the step size h. Let

en := y(tn)− yn

denote the error at time tn. Assuming that the exact solution y is smooth,

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(ξn)

for some ξn ∈ (tn, tn+1). Using the ODE:

y(tn+1) = y(tn) + hf(tn, y(tn)) +
h2

2
y′′(ξn).

Subtracting (32) from this equation:

en+1 = en + h (f(tn, y(tn))− f(tn, yn)) +
h2

2
y′′(ξn).

Now, assume that f is Lipschitz in y with constant L > 0. Then, by taking
absolute values and applying the triangle inequality with the Lipschitz assump-
tion,

|en+1| ≤ (1 + hL)|en|+
h2

2
|y′′(ξn)|.

Suppose that y′′ is bounded with constantM > 0. Then, by recursively applying
this inequality:

|en+1| ≤ (1 + hL)

(
(1 + hL)|en−1|+

h2

2
M

)
+

h2

2
M

= (1 + hL)2|en−1|+
h2

2
M(1 + (1 + hL))

...

≤ (1 + hL)n+1|e0|+
h2

2
M

n∑
j=0

(1 + hL)j .

From the initial condition, e0 = 0, so

|en+1| ≤
h2

2
M

n∑
j=0

(1 + hL)j .

Recalling the geometric sum identity,

n∑
j=0

rj =
1− rn+1

1− r
,

33

we apply this to the inequality above:

|en+1| ≤
h2

2
M

(1 + hL)n+1 − 1

hL
=

h

2

M

L

(
(1 + hL)

n+1 − 1
)
.

We now recall the following property of the exponential function:

ex = lim
m→∞

(
1 +

x

m

)m
,

and, when x > 0,

ex ≥
(
1 +

x

m

)m
for all m. Using this above for m = n + 1 and x = (n + 1)hL = tn+1L, we
conclude the following.

Theorem 7.14 (Accuracy of the forward Euler method). Suppose f(t, y) is
Lipschitz in y with constant L > 0, and suppose that the solution y to (31)
has a bounded second derivative with bound M > 0. Then, the forward Euler
method (32) with timestep h > 0 and discrete time points tn = nh has the
following error bound for all n:

|y(tn)− yn| ≤ h
M

2L

(
etnL − 1

)
.

Thus, the forward Euler method is only first-order accurate.

34

8 Lecture 8

8.1 Higher-order Taylor methods

In the previous section, we derived the forward Euler method by using a forward
difference approximation to the derivative. We also could have derived the
method by using Taylor expansions and replacing certain derivatives with the
function f(t, y) from the ODE. Let us do this now, since we can generalize it to
higher-order accurate methods later.

Let y(t) be the solution to the ODE (31), and assume that y is smooth.
Then,

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(ξn)

for some ξn ∈ (tn, tn+1). Using the ODE (31),

y(tn+1) = y(tn) + hf(tn, y(tn)) +
h2

2
y′′(ξn).

By dropping the O(h2) term, we obtain the forward Euler method:

yn+1 = yn + hf(tn, yn).

If we continue further out in the Taylor expansion, we can obtain higher-
order accurate methods. For example, expanding out one more term:

y(tn+1) = y(tn) + hy′(tn) +
h2

2
y′′(tn) +

h3

6
y′′′(ξn).

We replace y′(tn) by f(tn, y(tn)). To deal with y′′(tn), we take a derivative of
(31):

y′′(t) = ∂tf(t, y(t)) + ∂yf(t, y(t))y
′(t)

= ∂tf(t, y(t)) + ∂yf(t, y(t))f(t, y(t)).

Inserting this and dropping the O(h3) term, we obtain a second-order accurate
explicit method:

yn+1 = yn + hf(tn, yn) +
h2

2

(
∂tf(tn, yn) + ∂yf(tn, yn)f(tn, yn)

)
. (33)

Now, we need f , ∂tf , and ∂yf to be Lipschitz in y in order to prove an error
bound similar to the forward Euler method.

Example 8.1 (Second-order accurate explicit method). Let f(t, y) = y3. Then
the second-order accurate scheme above reads

yn+1 = yn + hy3n +
3h2

2
y5n.

35

8.2 Runge–Kutta methods

Computing derivatives of f(t, y(t)) is tedious and restricts the methods of the
previous section to only be useful for sufficiently smooth f . To circumvent
this, we can seek to replace derivatives of f(t, y(t)) with values of the form
f(t + α, y + β). This process leads to a class of methods called Runge–Kutta
methods. We explain with an example.

Returning to the second-order explicit scheme (33), if we expand f(t+α, y+
β) in a Taylor expansion in both variables:

f(t+ α, y + β) = f(t, y) + α∂tf(t, y) + β∂yf(t, y) +O(α2) +O(αβ) +O(β2).

If we set α = h/2 and β = hf(t, y)/2,

f(t+h/2, y+hf(t, y)/2) = f(t, y)+
h

2

(
∂tf(t, y) + ∂yf(t, y)f(t, y)

)
+O(h2).

Dropping the O(h2) term, we see that the term on the right matches up with
the terms in (33). Therefore, by making the substitution above, we obtain the
following second-order explicit Runge–Kutta scheme:

yn+1 = yn + hf

(
tn +

h

2
, yn +

h

2
f(tn, yn)

)
. (34)

For even higher-order methods, the procedure is similar. Perform a high-
order Taylor expansion of y(tn+1), replacing derivatives of y with partial deriva-
tives of f . Then, for the partial derivatives of f , replace them with suitable
values of the form f(t + α, y + β) where α and β come from matching coeffi-
cients with higher-order Taylor expansions of f . A popular high-order explicit
Runge–Kutta scheme is the 4th-order Runge–Kutta scheme, also known as RK4:

k1 := f(tn, yn),

k2 := f(tn + h/2, yn + h/2k1),

k3 := f(tn + h/2, yn + h/2k2),

k4 := f(tn + h, yn + hk3),

yn+1 = yn +
h

6

(
k1 + 2k2 + 2k3 + k4

)
,

(35)

36

	Lecture 1
	Bisection method
	Fixed point methods

	Lecture 2
	Newton's method
	Quadratic convergence of Newton's method
	Secant method

	Lecture 3
	Polynomial interpolation

	Lecture 4
	Divided differences
	Hermite interpolation

	Lecture 5
	Cubic splines
	Numerical differentiation
	Richardson extrapolation

	Lecture 6
	Numerical integration
	Composite numerical integration

	Lecture 7
	Gaussian quadrature
	Euler's method for ordinary differential equations (ODEs)

	Lecture 8
	Higher-order Taylor methods
	Runge–Kutta methods

