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1 Lecture 1

1.1 Bisection method

Let f(x) be a continuous function on the interval [a, b].

Proposition 1 (Existence of roots). If f(a)f(b) < 0, then there is a point
p ∈ (a, b) such that f(p) = 0.

Proof. If f(a)f(b) < 0, then f(a) and f(b) have opposite signs. That is, f(a) > 0
and f(b) < 0, or f(a) < 0 and f(b) > 0. By the Intermediate Value Theorem, f
attains all possible values between f(a) and f(b). In particular, there is a point
p ∈ (a, b) where f(p) = 0.

The bisection method is an algorithm to find the point p. The algorithm is
as follows for the case that f(a) < 0 < f(b).
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Algorithm 1 Bisection method

1: xleft := a, xright := b, n := 0, x := (xleft + xright)/2
2: while |xleft − xright| > tol and n ≤ nmax do
3: if f(x) = 0 then
4: return x
5: else if f(x) < 0 then
6: xleft ← x
7: else
8: xright ← x
9: end if

10: n← n+ 1
11: x← (xleft + xright)/2
12: end while
13: return x

1.2 Fixed point methods

Given a continuous function g(x), suppose we want to solve the equation x =
g(x). One possible iterative method is defined by

xn+1 = g(xn), (1)

where we provide a starting value x0. Whether or not this converges to a solution
as n→∞ depends on the properties of g and the starting value x0.

Theorem 2 (Existence of fixed points). If g(x) ∈ [a, b] for all x ∈ [a, b], then g
has a fixed point in [a, b].

Proof. Let h(x) = g(x) − x. Then h(a) ≤ 0, h(b) ≥ 0 and h is continuous. If
h(a) = 0, then a is a fixed point of g. If h(b) = 0, then b is a fixed point of
g. If h(a) and h(b) are both nonzero, then h(a) < 0 < h(b). By the previous
proposition, there exists x0 ∈ (a, b) such that h(x0) = 0, i.e. g(x0) = x0.

Theorem 3 (Convergence of fixed-point methods). Suppose g is differentiable,
and there exists k such that |g′(x)| ≤ k < 1 for all x ∈ [a, b]. Then, g has a
unique fixed point, and the iterative method (1) converges to this point for any
initial value x0 ∈ [a, b].

Proof. By the Mean Value Theorem, for distinct x, y ∈ [a, b], there exists z ∈
[a, b] such that

g(x)− g(y) = g′(z)(x− y).

Therefore, since |g′(z)| ≤ k < 1, we have that

|g(x)− g(y)| ≤ k|x− y| < |x− y|

for all distinct x, y ∈ [a, b].
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Now, let x0 ∈ [a, b], and set xn+1 = g(xn) for all n ≥ 0. From above, for all
n ≥ 0,

|xn+2 − xn+1| = |g(xn+1)− g(xn)| ≤ k|xn+1 − xn|.

By repeating this, we have

|xn+2 − xn+1| ≤ kn+1|x1 − x0|

for all n. Therefore, for any m > n ≥ 0, by writing m = n+ (m− n),

|xm − xn| ≤ |xn+(m−n) − xn+(m−n−1)|
+ |xn+(m−n−1) − xn+(m−n−2)|+ · · ·+ |xn+1 − xn|

≤ (km−n−1 + km−n−2 + · · ·+ kn)|x1 − x0|. (2)

Since k < 1, the terms in the last inequality are the Cauchy tail of the convergent
geometric series

∑
i k

i. Therefore, |xm−xn| → 0 as m,n→∞, so the sequence
(xn)n is a Cauchy sequence of real numbers. The sequence therefore must
converge to some number p.

Since g(xn) = xn+1 and g is continuous, taking limits of this equation yields
g(p) = p, so p is a fixed point of g. If q is another fixed point of g, then, from
above,

|p− q| = |g(p)− g(q)| < |p− q|,

which is a contradiction, so p is the only fixed point of g.

2 Lecture 2

2.1 Newton’s method

Newton’s method is a fixed-point method to find the roots of a differentiable
function f(x). It is defined by the following algorithm:

xn+1 = xn −
f(xn)

f ′(xn)
. (3)

If we set g(x) = f(x)/f ′(x), then the above equation is of the form (1), so that
Newton’s method is indeed a fixed-point method.

Lemma 4. Suppose f is twice differentiable and f ′(p) ̸= 0. Let g(x) = x −
f(x)/f ′(x).

1. p is a fixed point of g iff f(p) = 0.

2. If f(p) = 0, then g′(p) = 0.

Proof. 1. If p is a fixed point of g, then p = g(p) = p−f(p)/f ′(p), so f(p) = 0.
Conversely, if f(p) = 0, then g(p) = p− f(p)/f ′(p) = p.
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2.

g′(x) = 1− f ′(x)2 − f(x)f ′′(x)

f ′(x)2
=

f(x)f ′′(x)

f ′(x)2
.

Since f(p) = 0, g′(p) = 0.

Theorem 5 (Convergence of Newton’s method). Suppose f is twice differen-
tiable, has a root at p and f ′(p) ̸= 0. For an initial value x0 sufficiently close
to p, Newton’s method converges to p.

Proof. We let g(x) = f(x)/f ′(x). Then, g is continuously differentiable, and, by
the previous lemma, p is a fixed point of g and g′(p) = 0. Therefore, there exists
δ > 0 such that, whenever |x − p| ≤ δ, |g′(x)| ≤ 1/2 < 1. By using Theorem
3 with k = 1/2, a = p − δ, b = p + δ, we conclude that whenever x0 ∈ [a, b],
Newton’s method converges to p.

2.2 Quadratic convergence of Newton’s method

Definition 6 (Order of convergence). Suppose that a sequence xn → p as
n → ∞. We say that the sequence converges with order r > 0 if there is a
constant 0 ≤ λ <∞ such that

|xn+1 − p| ≤ λ|xn − p|r (4)

for all n sufficiently large. For r = 1, we say the sequence converges linearly,
and for r = 2, we say the sequence converges quadratically.

Theorem 7 (Quadratic convergence of Newton’s method). Let f be a 3-times
continuously differentiable function with a root at p and f ′(p) ̸= 0. Suppose
that an initial value x0 is chosen sufficiently close to p so that Newton’s method
converges to p. Then, the method converges quadratically.

Proof. We let g(x) = f(x)/f ′(x). Then, g is a twice continuously differentiable
function. Using Taylor’s Theorem around p, for all n, there exists ξn between
xn and p such that

xn+1 = g(xn) = g(p) + g′(p)(xn − p) + g′′(ξn)(xn − p)2.

From Lemma 4, g(p) = p and g′(p) = 0, so

|xn+1 − p| = |g′′(ξn)||xn − p|2.

There exists N > 0 such that |xn − p| ≤ 1 for all n ≥ N . Thus, for all n ≥ N ,
ξn lies in the interval [p − 1, p + 1]. Since g′′ is continuous on the closed and
bounded interval [p− 1, p+ 1], we may set

λ := max
ξ∈[p−1,p+1]

|g′′(ξ)|.

Then, we conclude that

|xn+1 − p| ≤ λ|xn − p|2

when n ≥ N , so Newton’s method converges quadratically.
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2.3 Secant method

In Newton’s method, we may replace f ′(x) by a backward difference approxi-
mation

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
.

Doing so gives us the secant method:

xn+1 = xn −
f(xn)

f(xn)− f(xn−1)
(xn − xn−1), (5)

where now we must provide 2 initial conditions x0, x1.

5


