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1 Exercise 1

1.1 Problem 1

A function u belongs to H1(−1, 1) if and only if

1. u belongs to L2(−1, 1),

2. u has a weak derivative in L2(−1, 1).

A function u belongs to L2(−1, 1) if and only if the integral∫ 1

−1

u(x)2 dx

exists and is finite. One way to show this is to explicitly compute the integral.
There is a more elegant way to do this without computing anything. I’ll let you
figure that one out.

To find a weak derivative of u, let φ be a test function, meaning that φ ∈
C∞

0 ([−1, 1]), which means that

1. φ is infinitely differentiable,

2. φ(−1) = 0,

3. φ(1) = 0.

Then split up the integral over the pieces of u∫ 1

−1

u(x)φ′(x) dx =

∫ 0

−1

u(x)φ′(x) dx+

∫ 1

0

u(x)φ′(x) dx

and then do integration by parts. See what falls out at the end to find a
candidate for the weak derivative v of u, and then check if v ∈ L2(−1, 1).
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1.2 Problem 2

This is a generalization of problem 1, so we proceed similarly. This time, ex-
plicitly compute the integral of u(x)2 where u(x) = |x|α and see which values of
α give you a finite integral. This tells you which α allows u ∈ L2(a, b). Then let
φ be a test function, do integration by parts over the pieces of u as in problem
1, and see what falls out to give you a candidate for the weak v derivative of u.
This will tell you which α allows for the integration-by-parts to happen at all
and thus give you a candidate. Then compute the integral of v(x)2 to see which
α allow for v ∈ L2(−1, 1).

1.3 Problem 3

Be careful here. Observe that if φ is a test function on [−1, 1], this does not
mean that the restriction φ|[−1,0] is a test function on [−1, 0], nor is it a test
function when restricted to [0, 1]. Therefore, we cannot immediately do the
following calculation∫ 1

−1

u(x)φ′(x) dx =

∫ 0

−1

u1(x)φ
′(x) dx+

∫ 1

0

u2(x)φ
′(x) dx

= −
∫ 0

−1

u′
1(x)φ(x) dx−

∫ 1

0

u′
2(x)φ(x) dx

since we can only go to the second line when φ|[−1,0] is a test function on [−1, 0]
and φ|[0,1] is a test function on [0, 1]. We have to be a bit more clever here to
justify this. To start, we need the following theorem.

Theorem 1. If u ∈ H1(a, b), then there is a sequence un of smooth functions
in C∞(a, b) that converges to u in H1(a, b).

We apply this to u1 and u2 to get a sequence u1
n in H1(−1, 0) and a sequence

u2
n in H1(0, 1) where ui

n converges to ui. Let

un(x) =

{
u1
n(x) x ∈ (−1, 0)

u2
n(x) x ∈ [0, 1)

Then we have that∫ 1

−1

un(x)φ
′(x) dx =

∫ 0

−1

u1
n(x)φ

′(x) dx+

∫ 1

0

u2
n(x)φ

′(x) dx

= −
∫ 0

−1

(u1
n)

′(x)φ(x) dx−
∫ 1

0

(u2
n)

′(x)φ(x) dx+ (u1
n(0)− u2

n(0))φ(0)

= −
∫ 0

−1

vn(x)φ(x) dx+ (u1
n(0)− u2

n(0))φ(0)
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where the second step follows from integration-by-parts, which is allowed now
because the ui

n are classically smooth and not only in H1, and

vn(x) =

{
(u1

n)
′(x) x ∈ (−1, 0)

(u2
n)

′(x) x ∈ [0, 1)
.

Set

v(x) =

{
u′
1(x) x ∈ (−1, 0)

u′
2(x) x ∈ [0, 1)

.

Show that ∫ 1

−1

un(x)φ
′(x) dx →

∫ 1

−1

u(x)φ′(x) dx,∫ 1

−1

vn(x)φ(x) dx →
∫ 1

−1

v(x)φ(x) dx,

(u1
n(0)− u2

n(0))φ(0) → 0,

v ∈ L2(−1, 1)

as n → ∞ and conclude that u ∈ H1(−1, 1) with v as its weak derivative. You
are free to use the following theorem, which is a consequence of the optional
problem 5.

Theorem 2. Fix x0 ∈ [a, b]. Then the map

Ex0
(u) = u(x0)

is a continuous linear functional on H1(a, b). In other words,

Ex0(cu+ v) = cEx0(u) + Ex0(v)

for all u, v ∈ H1(a, b) and all c ∈ R, and there is a constant C > 0 such that

|Ex0(u)| ≤ C∥u∥H1(a,b)

for all u ∈ H1(a, b).

1.4 Problem 4

Let u ∈ H1(a, b). Then there is a sequence vn of smooth functions in C∞(a, b)
that converges to u in H1(a, b). Use the fact that

∥v∥L∞(a,b) ≤ C∥v∥H1(a,b)

when v ∈ C∞(a, b) (which is a consequence of the last inequality in question 2 of
exercise 2) to argue that vn is Cauchy in L∞(a, b). Since L∞(a, b) is complete,
this implies that there exists v ∈ L∞(a, b) such that vn → v in L∞(a, b). Now
argue that u = v.
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2 Exercise 2

2.1 Problem 1

Use the triangle inequality and the Cauchy-Schwarz inequality

|u(x)| ≤ |u(y)|+
∫ 1

0

|u′(s)|ds

= |u(y)|+ (1, |u′|)L2(0,1)

≤ |u(y)|+ ∥u′∥L2(0,1).

Now pick particular points for y.

2.2 Problem 2

For the first inequality, first integrate

u(x) =

∫ 1

0

u(y) dy +

∫ 1

0

∫ x

y

u′(s) dsdy.

Then use the triangle inequality and Cauchy-Schwarz:

|u(x)| ≤ |u|+ ∥u′∥L2(0,1)

where

u =

∫ 1

0

u(y) dy.

At some point you will need to use Young’s inequality:

2ab ≤ a2 + b2,

which follows from the fact that

(a− b)2 ≥ 0

for all a, b ∈ R.
For the second and third inequalities, do essentially the same thing as prob-

lem 1, pick particular points for y, and apply Young’s inequality.
For the last inequality, proceed as in problem 1 to get

|u(x)| ≤ |u(y)|+ ∥u′∥L2(0,1).

Then square, apply Young’s inequality, and integrate.
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