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1 Exercise 1

1.1 Problem 1

Suppose that you have a smooth function u that satisfies the boundary condi-
tions u(0) = u(1) = 0 and which solves the ODE

−(ku′)′ + bu′ + qu = f

on (0, 1). Let v be another smooth function that also satisfies the boundary
conditions. Multiply the ODE by v and integrate by parts to arrive at an
expression of the form

a(u, v) = F (v)

where a(u, v) involves integrals with u′, v′, u, v, k, b, and q, and F (v) involves
an integral with f and v. Now determine what Sobolev space V that u and
v should belong to so that the bilinear form a : V × V → R and the linear
form F : V → R are well-defined, and which also incorporates the boundary
conditions. The weak formulation is the following problem: find u ∈ V such
that

a(u, v) = F (v)

for all v ∈ V .

1.2 Problem 2

Such stability estimates are also called a priori (a Latin phrase meaning “from
before”) estimates. They are called such estimates because they are done before
we actually know if we have a solution to the ODE. They always start in the
following way: suppose that we have a solution u ∈ V (where V is chosen in
problem 1) such that

a(u, v) = F (v)

for all v ∈ V (where a and F are also from problem 1). If you chose F correctly,
you should be able to show that

F (v) ≤ ∥f∥L2(0,1)∥v∥L2(0,1)
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for all v ∈ V . If you chose a correctly, you should be able to show that

a(u, u) ≥ k∥u′∥2L2(0,1)

for all u ∈ V . The last ingredient you will need is the following Poincaré
inequality:

Theorem 1. Let x0 ∈ [a, b] and let H1
x0
(a, b) be the space of all functions

u ∈ H1(a, b) such that u(x0) = 0. Then there is a constant C > 0 such that

∥u∥L2(a,b) ≤ C∥u′∥L2(a,b).

Proof. If u is a smooth function such that u(x0) = 0, then for any x > x0 we
have that

u(x) =

∫ x

x0

u′(t) dt.

Therefore, by Cauchy-Schwarz,

|u(x)| ≤
∫ x

x0

|u′(t)|dt ≤
√
b− a∥u′∥L2(a,b).

Now for x < x0, we have that

u(x) = −
∫ x0

x

u′(t) dt,

so we can repeat a similar argument to conclude that

|u(x)| ≤
√
b− a∥u′∥L2(a,b)

for all x ∈ [a, b]. This implies that

∥u∥L2(a,b) ≤ (b− a)∥u′∥L2(a,b)

for all smooth functions u such that u(x0) = 0.
Now let u ∈ H1

x0
(a, b). Then since smooth functions that vanish at x0 are

dense in H1
x0
(a, b), there is a sequence (un)n of smooth functions that vanish

at x0 such that ∥u − un∥H1(a,b) → 0 as n → ∞. Then ∥u − un∥L2(a,b) → 0 as
n → ∞ and ∥u′

n∥L2(a,b) → ∥u′∥L2(a,b) as n → ∞. Then for each n,

∥u∥L2(a,b) ≤ ∥un∥L2(a,b) + ∥u− un∥L2(a,b)

≤ (b− a)∥u′
n∥L2(a,b) + ∥u− un∥L2(a,b) → (b− a)∥u′∥L2(a,b)

as n → ∞. This finishes the proof.

Combining everything together will give you the stability result.
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2 Exercise 2

2.1 Problem 1

2.1.1 Part a

Multiply by a test function and integrate by parts. The boundary condition at
x = 1 is something we have seen before, but now for the boundary condition at 0,
use it to substitute for u′(0). Rearrange everything and you will get something
of the form

a(u, v) = F (v)

where a(u, v) involves integrals with u′, v′ as well as values u(0), v(0) and β,
while F (v) will involve an integral with f, v as well as the values v(0), γ, and
β. Once again, look at the bilinear form a and the linear form F to decide
which Sobolev space the functions u, v should belong to for the values a(u, v)
and F (v) to be well-defined and to also incorporate the boundary conditions
from the problem. Hint: you already included the boundary condition at 0 in a
weak sense when you did the substitution, but now what about the boundary
condition at x = 1?

2.1.2 Part b

Check the assumptions of the Lax-Milgram Theorem, which we recall below.

Theorem 2. Let V be a Hilbert space with inner product (·, ·)V and induced
norm ∥v∥V :=

√
(v, v)V . Let a : V × V → R and F : V → R be a bilinear form

and a linear form on V respectively. Suppose that

1. a is continuous on V : there exists C > 0 such that

|a(u, v)| ≤ C∥u∥V ∥v∥V

for all v ∈ V

2. F is continuous on V : there exists C ′ > 0 such that

|F (v)| ≤ C ′∥v∥V

for all v ∈ V

3. a is coercive (also known as elliptic) on V : there exists α > 0 such that

a(u, u) ≥ α∥u∥2V

for all u ∈ V

Then there is a unique u ∈ V such that

a(u, v) = F (v)

for all v ∈ V .
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If you chose a, V , and F correctly in part a, you will be able to verify all of
these assumptions. For the continuity assumptions, you will need the following,
which is a corollary from some of the results in your last homework.

Theorem 3. There is a constant C such that

|u(x)| ≤ C∥u∥H1(a,b)

for all x ∈ [a, b] and all u ∈ H1(a, b).

For coercivity, you will need to use the Poincaré inequality that I showed
earlier.

2.1.3 Part c

You can show either an estimate of the form

∥u∥H1(0,1) ≤ E(f, γ, β)

or
∥u′∥L2(0,1) ≤ Ẽ(f, γ, β)

where u is the solution to the weak problem that we showed exists from part
b and E(f, γ, β) and Ẽ(f, γ, β) are some continuous expressions involving the
function f and the boundary data γ and β. By the Poincaré inequality, we have
that

∥u′∥L2(0,1) ≤ ∥u∥H1(0,1) ≤ C∥u′∥L2(0,1)

so that the inequalities above are equivalent: one holds for some E iff the other
holds for some Ẽ. The argument is similar to stuff we have done earlier in the
homework: you will have to use the coercivity of a, the continuity of F , and
possibly the Poincaré inequality. Also, you cannot simply cite Lax-Milgram in
this problem since it asks you to derive it yourself.

2.1.4 Part d

If a(u1, v) = F (v) = a(u2, v) for all v ∈ V , then

a(u1, v)− a(u2, v) = 0

for all v ∈ V . Now use bilinearity and coercivity.

2.2 Problem 2

2.2.1 Part a

Suppose u and v are smooth, undo the integration by parts and use the boundary
condition u(1) = 0 to get something of the form∫ 1

0

(Du− f)v dx+ (boundary term at x = 0) = 0
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for all smooth v (and, by density, all v ∈ V ), where Du is some expression
involving u′′, α, and u. Since V contains functions that vanish at x = 0, argue
that this implies ∫ 1

0

(Du− f)v dx = 0 for all v ∈ C∞
c (0, 1)

(boundary term at x = 0) = 0 for all v ∈ V

The hint in the homework tells you what ODE u satisfies on (0, 1), while picking
v to be a smooth function that does not vanish at x = 0 in the boundary term
equation will give you another boundary term that u must satisfy at x = 0.
Therefore, your answer should be of the form

ODE that u satisfies on (0, 1)

boundary condition at x = 0

boundary condition at x = 1

2.2.2 Part b

Same routine as the last energy estimates: use coercivity of the left side, conti-
nuity of the right side, and maybe a Poincaré inequality depending on if you’re
estimating ∥u∥H1(0,1) or ∥u′∥L2(0,1).
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