MATH 610 Homework 2 Hints

Jordan Hoffart

February 5, 2024

1 Exercise 1

1.1 Problem 1

Suppose that you have a smooth function u that satisfies the boundary conditions $u(0)=u(1)=0$ and which solves the ODE

$$
-\left(k u^{\prime}\right)^{\prime}+b u^{\prime}+q u=f
$$

on $(0,1)$. Let v be another smooth function that also satisfies the boundary conditions. Multiply the ODE by v and integrate by parts to arrive at an expression of the form

$$
a(u, v)=F(v)
$$

where $a(u, v)$ involves integrals with $u^{\prime}, v^{\prime}, u, v, k, b$, and q, and $F(v)$ involves an integral with f and v. Now determine what Sobolev space V that u and v should belong to so that the bilinear form $a: V \times V \rightarrow \mathbb{R}$ and the linear form $F: V \rightarrow \mathbb{R}$ are well-defined, and which also incorporates the boundary conditions. The weak formulation is the following problem: find $u \in V$ such that

$$
a(u, v)=F(v)
$$

for all $v \in V$.

1.2 Problem 2

Such stability estimates are also called a priori (a Latin phrase meaning "from before") estimates. They are called such estimates because they are done before we actually know if we have a solution to the ODE. They always start in the following way: suppose that we have a solution $u \in V$ (where V is chosen in problem 1) such that

$$
a(u, v)=F(v)
$$

for all $v \in V$ (where a and F are also from problem 1). If you chose F correctly, you should be able to show that

$$
F(v) \leq\|f\|_{L^{2}(0,1)}\|v\|_{L^{2}(0,1)}
$$

for all $v \in V$. If you chose a correctly, you should be able to show that

$$
a(u, u) \geq \bar{k}\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2}
$$

for all $u \in V$. The last ingredient you will need is the following Poincaré inequality:

Theorem 1. Let $x_{0} \in[a, b]$ and let $H_{x_{0}}^{1}(a, b)$ be the space of all functions $u \in H^{1}(a, b)$ such that $u\left(x_{0}\right)=0$. Then there is a constant $C>0$ such that

$$
\|u\|_{L^{2}(a, b)} \leq C\left\|u^{\prime}\right\|_{L^{2}(a, b)} .
$$

Proof. If u is a smooth function such that $u\left(x_{0}\right)=0$, then for any $x>x_{0}$ we have that

$$
u(x)=\int_{x_{0}}^{x} u^{\prime}(t) \mathrm{d} t
$$

Therefore, by Cauchy-Schwarz,

$$
|u(x)| \leq \int_{x_{0}}^{x}\left|u^{\prime}(t)\right| \mathrm{d} t \leq \sqrt{b-a}\left\|u^{\prime}\right\|_{L^{2}(a, b)}
$$

Now for $x<x_{0}$, we have that

$$
u(x)=-\int_{x}^{x_{0}} u^{\prime}(t) \mathrm{d} t
$$

so we can repeat a similar argument to conclude that

$$
|u(x)| \leq \sqrt{b-a}\left\|u^{\prime}\right\|_{L^{2}(a, b)}
$$

for all $x \in[a, b]$. This implies that

$$
\|u\|_{L^{2}(a, b)} \leq(b-a)\left\|u^{\prime}\right\|_{L^{2}(a, b)}
$$

for all smooth functions u such that $u\left(x_{0}\right)=0$.
Now let $u \in H_{x_{0}}^{1}(a, b)$. Then since smooth functions that vanish at x_{0} are dense in $H_{x_{0}}^{1}(a, b)$, there is a sequence $\left(u_{n}\right)_{n}$ of smooth functions that vanish at x_{0} such that $\left\|u-u_{n}\right\|_{H^{1}(a, b)} \rightarrow 0$ as $n \rightarrow \infty$. Then $\left\|u-u_{n}\right\|_{L^{2}(a, b)} \rightarrow 0$ as $n \rightarrow \infty$ and $\left\|u_{n}^{\prime}\right\|_{L^{2}(a, b)} \rightarrow\left\|u^{\prime}\right\|_{L^{2}(a, b)}$ as $n \rightarrow \infty$. Then for each n,

$$
\begin{aligned}
\|u\|_{L^{2}(a, b)} & \leq\left\|u_{n}\right\|_{L^{2}(a, b)}+\left\|u-u_{n}\right\|_{L^{2}(a, b)} \\
& \leq(b-a)\left\|u_{n}^{\prime}\right\|_{L^{2}(a, b)}+\left\|u-u_{n}\right\|_{L^{2}(a, b)} \rightarrow(b-a)\left\|u^{\prime}\right\|_{L^{2}(a, b)}
\end{aligned}
$$

as $n \rightarrow \infty$. This finishes the proof.
Combining everything together will give you the stability result.

2 Exercise 2

2.1 Problem 1

2.1.1 Part a

Multiply by a test function and integrate by parts. The boundary condition at $x=1$ is something we have seen before, but now for the boundary condition at 0 , use it to substitute for $u^{\prime}(0)$. Rearrange everything and you will get something of the form

$$
a(u, v)=F(v)
$$

where $a(u, v)$ involves integrals with u^{\prime}, v^{\prime} as well as values $u(0), v(0)$ and β, while $F(v)$ will involve an integral with f, v as well as the values $v(0), \gamma$, and β. Once again, look at the bilinear form a and the linear form F to decide which Sobolev space the functions u, v should belong to for the values $a(u, v)$ and $F(v)$ to be well-defined and to also incorporate the boundary conditions from the problem. Hint: you already included the boundary condition at 0 in a weak sense when you did the substitution, but now what about the boundary condition at $x=1$?

2.1.2 Part b

Check the assumptions of the Lax-Milgram Theorem, which we recall below.
Theorem 2. Let V be a Hilbert space with inner product $(\cdot, \cdot)_{V}$ and induced norm $\|v\|_{V}:=\sqrt{(v, v)_{V}}$. Let $a: V \times V \rightarrow \mathbb{R}$ and $F: V \rightarrow \mathbb{R}$ be a bilinear form and a linear form on V respectively. Suppose that

1. a is continuous on V : there exists $C>0$ such that

$$
|a(u, v)| \leq C\|u\|_{V}\|v\|_{V}
$$

for all $v \in V$
2. F is continuous on V : there exists $C^{\prime}>0$ such that

$$
|F(v)| \leq C^{\prime}\|v\|_{V}
$$

for all $v \in V$
3. a is coercive (also known as elliptic) on V : there exists $\alpha>0$ such that

$$
a(u, u) \geq \alpha\|u\|_{V}^{2}
$$

$$
\text { for all } u \in V
$$

Then there is a unique $u \in V$ such that

$$
a(u, v)=F(v)
$$

for all $v \in V$.

If you chose a, V, and F correctly in part a, you will be able to verify all of these assumptions. For the continuity assumptions, you will need the following, which is a corollary from some of the results in your last homework.

Theorem 3. There is a constant C such that

$$
|u(x)| \leq C\|u\|_{H^{1}(a, b)}
$$

for all $x \in[a, b]$ and all $u \in H^{1}(a, b)$.
For coercivity, you will need to use the Poincaré inequality that I showed earlier.

2.1.3 Part c

You can show either an estimate of the form

$$
\|u\|_{H^{1}(0,1)} \leq E(f, \gamma, \beta)
$$

or

$$
\left\|u^{\prime}\right\|_{L^{2}(0,1)} \leq \widetilde{E}(f, \gamma, \beta)
$$

where u is the solution to the weak problem that we showed exists from part b and $E(f, \gamma, \beta)$ and $\widetilde{E}(f, \gamma, \beta)$ are some continuous expressions involving the function f and the boundary data γ and β. By the Poincaré inequality, we have that

$$
\left\|u^{\prime}\right\|_{L^{2}(0,1)} \leq\|u\|_{H^{1}(0,1)} \leq C\left\|u^{\prime}\right\|_{L^{2}(0,1)}
$$

so that the inequalities above are equivalent: one holds for some E iff the other holds for some \widetilde{E}. The argument is similar to stuff we have done earlier in the homework: you will have to use the coercivity of a, the continuity of F, and possibly the Poincaré inequality. Also, you cannot simply cite Lax-Milgram in this problem since it asks you to derive it yourself.

2.1.4 Part d

If $a\left(u_{1}, v\right)=F(v)=a\left(u_{2}, v\right)$ for all $v \in V$, then

$$
a\left(u_{1}, v\right)-a\left(u_{2}, v\right)=0
$$

for all $v \in V$. Now use bilinearity and coercivity.

2.2 Problem 2

2.2.1 Part a

Suppose u and v are smooth, undo the integration by parts and use the boundary condition $u(1)=0$ to get something of the form

$$
\int_{0}^{1}(D u-f) v \mathrm{~d} x+(\text { boundary term at } x=0)=0
$$

for all smooth v (and, by density, all $v \in V$), where $D u$ is some expression involving $u^{\prime \prime}, \alpha$, and u. Since V contains functions that vanish at $x=0$, argue that this implies

$$
\int_{0}^{1}(D u-f) v \mathrm{~d} x=0 \text { for all } v \in C_{c}^{\infty}(0,1)
$$

(boundary term at $x=0$) $=0$ for all $v \in V$
The hint in the homework tells you what ODE u satisfies on $(0,1)$, while picking v to be a smooth function that does not vanish at $x=0$ in the boundary term equation will give you another boundary term that u must satisfy at $x=0$. Therefore, your answer should be of the form

ODE that u satisfies on $(0,1)$
boundary condition at $x=0$
boundary condition at $x=1$

2.2.2 Part b

Same routine as the last energy estimates: use coercivity of the left side, continuity of the right side, and maybe a Poincaré inequality depending on if you're estimating $\|u\|_{H^{1}(0,1)}$ or $\left\|u^{\prime}\right\|_{L^{2}(0,1)}$.

