MATH 610 Homework 3 Hints

Jordan Hoffart

February 20, 2024

1 Exercise 1

1.1 Problem 1

Multiply by a test function, integrate by parts, and use the boundary conditions. Find the correct Sobolev space V, the right bilinear form $a: V \times V \rightarrow \mathbb{R}$, and the right linear form $F: V \rightarrow \mathbb{R}$ such that the variational problem reads as follows: Find $u \in V$ such that

$$
a(u, v)=F(v)
$$

for all $v \in V$.

1.2 Problem 2

You have to solve problem 1 to get the answer for this problem as well, so the hint is the same.

1.3 Problem 3

First find the basis functions for the unit interval $(0,1)$. In other words, find $\widehat{\phi}_{i}$ for $i=1,2,3$ that are quadratic polynomials over $(0,1)$ and which

$$
\begin{array}{lll}
\widehat{\phi}_{1}(0)=1, & \int_{0}^{1} \widehat{\phi}_{1}(\widehat{x}) \mathrm{d} \widehat{x}=0, & \widehat{\phi}_{1}(1)=0 \\
\widehat{\phi}_{2}(0)=0, & \int_{0}^{1} \widehat{\phi}_{2}(\widehat{x}) \mathrm{d} \widehat{x}=1, & \widehat{\phi}_{2}(1)=0 \\
\widehat{\phi}_{3}(0)=0, & \int_{0}^{1} \widehat{\phi}_{3}(\widehat{x}) \mathrm{d} \widehat{x}=0, & \widehat{\phi}_{3}(1)=1 .
\end{array}
$$

Now we map $(0,1)$ onto $\left(x_{j}, x_{j+1}\right)$ via

$$
\begin{equation*}
T_{j}(\widehat{x})=x_{j}+\left(x_{j+1}-x_{j}\right) \widehat{x} \tag{1}
\end{equation*}
$$

Convince yourself (and me) that the basis function ϕ_{i}^{j} on $\left(x_{j}, x_{j+1}\right)$ that you are looking for is just given by

$$
\phi_{i}^{j}(x)=\widehat{\phi}_{i}\left(T_{j}^{-1}(x)\right)
$$

for all $x \in\left(x_{j}, x_{j+1}\right)$.

1.4 Problem 4

The element stiffness matrix S_{j} and the element mass matrix M_{j} are given by

$$
\begin{aligned}
\left(S_{j}\right)_{i, k} & =\int_{x_{j}}^{x_{j+1}} \frac{\mathrm{~d}}{\mathrm{~d} x} \phi_{i}^{j}(x) \frac{\mathrm{d}}{\mathrm{~d} x} \phi_{k}^{j}(x) \mathrm{d} x \\
\left(M_{j}\right)_{i, k} & =\int_{x_{j}}^{x_{j+1}} \phi_{i}^{j}(x) \phi_{k}^{j}(x) \mathrm{d} x
\end{aligned}
$$

Use the change of coordinates (1) to transform these integrals into integrals over $(0,1)$ involving the basis functions $\widehat{\phi}_{i}$ to simplify the computation.

1.5 Problem 5

The homework has a typo in it. We define the space V_{h} as the space of piecewise quadratics over the splitting $\left(x_{j}, x_{j+1}\right)$ without specifying any kind of continuity. However, the variational problem is posed on a subspace V of $H^{1}(0,1)$. Since functions in $H^{1}(0,1)$ are continuous, so are functions in V. Since we are working in the conforming setting, i.e. $V_{h} \subset V$, we must specify that V_{h} consist of continuous piecewise quadratics on the splitting, otherwise what we are doing doesn't fit into our theoretical framework.

The Ritz system is to find $u_{h} \in V_{h}$ such that

$$
a\left(u_{h}, v_{h}\right)=F\left(v_{h}\right)
$$

for all $v_{h} \in V_{h}$. Since V_{h} is finite dimensional, we can choose a basis $\psi_{1}, \ldots, \psi_{m}$ for V_{h} and arrive at the equivalent matrix-vector problem of finding the vector \vec{u}_{h} of coefficients of u_{h} with respect to the ψ_{i} such that

$$
\begin{equation*}
A_{h} \vec{u}_{h}=\vec{F}_{h}, \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
\left(A_{h}\right)_{i, j} & =a\left(\psi_{j}, \psi_{i}\right) \\
\left(\vec{F}_{h}\right)_{i} & =F\left(\psi_{i}\right) \tag{3}\\
u_{h} & =\sum_{j=1}^{m}\left(\vec{u}_{h}\right)_{j} \psi_{j} .
\end{align*}
$$

The particular basis that we choose for V_{h} is constructed from the ϕ_{i}^{j} in the following way. First, we observe that $\phi_{2}^{j}=0$ at the endpoints $\left(x_{j}, x_{j+1}\right)$, so we can extend these by zero to be functions in V_{h}. In other words, we let

$$
\psi_{j+1}(x)= \begin{cases}\phi_{2}^{j}(x) & x \in\left(x_{j}, x_{j+1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for $j=0, \ldots, n-1$. This gives us n basis functions defiend so far. Next, on two adjacent intervals $\left(x_{j-1}, x_{j}\right)$ and $\left(x_{j}, x_{j+1}\right)$, we have that $\phi_{3}^{j-1}\left(x_{j}\right)=\phi_{1}^{j}\left(x_{j}\right)=1$, while $\phi_{3}^{j-1}\left(x_{j-1}\right)=0$ and $\phi_{1}^{j}\left(x_{j+1}\right)=0$. Therefore, we may set

$$
\psi_{n+j}(x)= \begin{cases}\phi_{3}^{j-1}(x) & x \in\left(x_{j-1}, x_{j}\right) \\ \phi_{1}^{j}(x) & x \in\left(x_{j}, x_{j+1}\right) \\ 0 & \text { otherwise }\end{cases}
$$

for $j=1, \ldots, n-1$. This now gives us $n-1$ more basis functions, so we have $2 n$ basis functions defined so far. Finally, since $\phi_{1}^{0}\left(x_{1}\right)=0$ and $\phi_{3}^{n-1}\left(x_{n-1}\right)=0$, we set

$$
\begin{aligned}
\psi_{2 n}(x) & =\left\{\begin{array}{ll}
\phi_{1}^{0}(x) & x \in\left(x_{0}, x_{1}\right) \\
0 & \text { otherwise }
\end{array},\right. \\
\psi_{2 n+1}(x) & = \begin{cases}\phi_{3}^{n-1}(x) & x \in\left(x_{n-1}, x_{n}\right) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

This gives us a grand total of $m=2 n+1$ basis functions.
The global stiffness and mass matrices S and M are then defined as

$$
\begin{aligned}
S_{i, j} & =\int_{0}^{1} \psi_{j}^{\prime}(x) \psi_{i}^{\prime}(x) \mathrm{d} x \\
M_{i, j} & =\int_{0}^{1} \psi_{j}(x) \psi_{i}(x) \mathrm{d} x
\end{aligned}
$$

To compute these entries, split up the integrals over the elements $\left(x_{j}, x_{j+1}\right)$, consider which integrals are nonzero, and use the element-wise stiffness and mass matrices from the previous problem.
Remark 1. The ordering of the basis is not unique. Here is a re-ordering of the basis above that can be more convenient for writing down the globally assembled stiffness and mass matrices of the problem.

First, we set $\theta_{1}=\psi_{2 n}$. Then we set $\theta_{2}=\psi_{1}$. Then we set $\theta_{3}=\psi_{n+1}$. Observe that, when restricted to the first subinterval $\left(x_{0}, x_{1}\right)$, θ_{1} corresponds to ϕ_{1}^{0}, θ_{2} corresponds to ϕ_{2}^{0}, and θ_{3} corresponds to ϕ_{3}^{0}.

We proceed similarly for the next subinterval, setting $\theta_{4}=\psi_{2}$ and $\theta_{5}=\psi_{n+2}$. Then θ_{3} corresponds to ϕ_{1}^{1}, θ_{4} corresponds to ϕ_{2}^{1}, and θ_{5} corresponds to ϕ_{3}^{1} on the subinterval $\left(x_{1}, x_{2}\right)$.

In general, for interior subintervals $\left(x_{j}, x_{j+1}\right)$ with $1 \leq j \leq n-2$, we have the global basis functions $\theta_{2+3(j-1)+1}=\psi_{n+j}, \theta_{2+3(j-1)+2}=\psi_{j+1}$; while for the first subinterval we have $\theta_{1}=\psi_{2 n+1}$ and $\theta_{2}=\psi_{1}$ and the last subinterval $\left(x_{n-1}, x_{n}\right)$ we have $\theta_{2 n-1}=\psi_{2 n-1}, \theta_{2 n}=\psi_{n}$, and $\theta_{2 n+1}=\psi_{2 n+1}$.

This ordering of the basis functions is more localized in the sense that basis function θ_{j} only has nonzero interactions with basis functions θ_{j-1}, itself, and θ_{j+1}. However, it is less convenient to write down than the previous one.

1.6 Problem 6

The right hand side of the Ritz system is just given by (3). If we replace the boundary condition at $x=0$, then the space of the variational problem V changes as well as the conforming finite element space V_{h} and the bilinear form a and linear form F. Call the new discrete space $V_{h 0}$, the new bilinear form a_{0}, and the new linear form F_{0}. Using the basis of V_{h}, determine the corresponding basis for $V_{h 0}$ constructed as in the last problem, and use this new basis to recompute the Ritz system (2).

