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Problem 1

This problem is deceptively tricky. If we try to proceed as in the proof of Lemma
4.2.2 in the class notes, then we may be tempted to use the exact solution to
the ODE

−W ′′ + bW ′ = 1, x ∈ (0, 1),

W (0) = 0,

W (1) = 0,

which is

W (x) =
1

b(1− eb)
(ebx − 1) +

x

b
.

We would then set
Wi = W (xi)

for each i. Now, unlike Lemma 4.2.2, the Wi do not exactly satisfy the corre-
sponding difference equation. That is, it is not true that the Wi satisfy

−Wi+1 − 2Wi +Wi−1

h2
+ b

Wi+1 −Wi

h
= 1, i ∈ {1, . . . , N} (1a)

W0 = 0, (1b)

WN+1 = 0. (1c)

One can see this by looking at Taylor series expansions of W around the points
xi using the points xi+1 and xi−1. I leave the details to you, but the essential
reason why the equation is not satisfied exactly is becauseW is not a polynomial.
We didn’t have this problem in Lemma 4.2.2 because the exact solution in that
case is a polynomial, and so there is no remainder term in the Taylor series
expansions.

We have to proceed in a slightly different way to tackle this problem. What
we need is not the exact ODE solution W , but just a vector W⃗ that satisfies
the system of difference equations (1) exactly. Does such a vector exist? Well,
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since the system (1) is a square system of linear equations, it suffices to show
that if

−Wi+1 − 2Wi +Wi−1

h2
+ b

Wi+1 −Wi

h
= 0, i ∈ {1, . . . , N} (2a)

W0 = 0, (2b)

WN+1 = 0, (2c)

then W⃗ = 0⃗. We can show this by proving that this system has a discrete
maximum principle and a discrete minimum principle. I will partially state
these below, and I will leave it to you to prove these results as well as to come
up with the condition on h that is sufficient for these lemmas to hold true.

Lemma 1 (Discrete maximum principle). Suppose that h satisfies some stability

condition that you must explicitly find. If W⃗ satisfies

−Wi+1 − 2Wi +Wi−1

h2
+ b

Wi+1 −Wi

h
≤ 0, i ∈ {1, . . . , N}

W0 = 0,

WN+1 = 0,

then
max

i∈{0,...,N+1}
Wi = max(W0,WN+1) = 0.

Corollary 1 (Discrete minimum principle). Suppose that h satisfies the same

stability condition from above. If W⃗ satisfies

−Wi+1 − 2Wi +Wi−1

h2
+ b

Wi+1 −Wi

h
≥ 0, i ∈ {1, . . . , N}

W0 = 0,

WN+1 = 0,

then
min

i∈{0,...,N+1}
Wi = min(W0,WN+1) = 0.

Corollary 2 (Uniqueness). Under the stability condition on h, the square linear

system (2) has only W⃗ = 0⃗ as its solution, and therefore there is a unique vector

W⃗ 0 that solves (1).

Now that we have established the existence of W⃗ 0 that satisfies (1), we can
now proceed as in Lemma 4.2.2 from the class notes to finish the proof.

Problem 2.1

It’s hard to give a hint for this that isn’t essentially the entire proof. Instead,
I will show a proof of the related result in 1d, but I will present the proof in a
way that can be modified for higher dimensions. I will leave the details to you
to provide this generalization.
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Theorem 1. There is a constant C > 0 such that√
v(0)2 + v(1)2 ≤ C(∥v∥L2(0,1) + ∥v′∥L2(0,1))

for all v ∈ C1[0, 1].

To prove this theorem, we will first establish a lemma.

Lemma 2. If v(0) = 0, then

|v(1)| ≤ ∥v′∥L2(0,1).

Similarly, if v(1) = 0, then

|v(0)| ≤ ∥v′∥L2(0,1).

Proof. For the first inequality, we use the fundamental theorem of calculus and
write

v(1) =

∫ 1

0

v′(x) dx.

Then we take absolute values and apply Cauchy-Schwarz. The other inequality
is proved in the exact same way.

Now we proceed with the proof of the theorem.

Proof. The trick here is to realize that we can write v as v(x) = v1(x) + v2(x),
where v1(x) = xv(x) vanishes at x = 0 and v2(x) = (1 − x)v(x) vanishes at
x = 1. Then we apply the previous lemma to vi to get that

|v(1)| = |v1(1)| ≤ ∥v′1∥L2(0,1) = ∥v + xv′∥L2(0,1) ≤ ∥v∥L2(0,1) + ∥v′∥L2(0,1),

|v(0)| = |v2(0)| ≤ ∥v′2∥L2(0,1) = ∥(1− x)v′ − v∥L2(0,1) ≤ ∥v∥L2(0,1) + ∥v′∥L2(0,1).

Therefore,√
v(0)2 + v(1)2 ≤ |v(0)|+ |v(1)| ≤ 2

(
∥v∥L2(0,1) + ∥v′∥L2(0,1)

)
.

As a hint for the generalization, we realize that we can write v ∈ C1(K̂) as
v(x̂, ŷ) = v1(x̂, ŷ) + v2(x̂, ŷ) + v3(x̂, ŷ) where

v1(x̂, ŷ) = x̂v(x̂, ŷ) vanishes on the part of the boundary where x̂ = 0,

v2(x̂, ŷ) = ŷv(x̂, ŷ) vanishes on the part of the boundary where ŷ = 0,

v3(x̂, ŷ) = (1− x̂− ŷ)v(x̂, ŷ) vanishes on the part of the boundary where 1− x̂− ŷ = 0.

Now just establish a version of Lemma 2 that bounds integrals of vi over the
boundary portion where vj = 0 by some constant multiple of ∥∂xvi∥L2(K̂) or

∥∂yvi∥L2(K̂). There will be 6 inequalities in total of the form

∥vi∥L2(Êj)
≤ C∥∂kvi∥L2(K̂)

where Êj is one of the edges of K̂ where vi is not necessarily zero and ∂k is one
of the partial derivatives.
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Problem 2.2

Denote the vertices as v1, v2, and v3. Consider the vectors formed from the
differences v2−v1 and v3−v1. For the inequalities, recall that all norms on finite-
dimensional vector spaces are equivalent. This can give you the result without
knowing anything about the constants. Also, there is a typo in this question.
To the best of my knowledge, the constants will depend on the diameter h of
the triangle K. In fact, one can show that

∥DFK∥ := sup
ξ∈R2

ξ ̸=0

∥DFKξ∥
∥ξ∥

≤ Ch

where C is a constant that does not depend on the diameter.

Problem 2.3

Time to get good at calculus. This is essentially an exercise in change-of-
variables. First I will give you an unorganized collection of calculus facts that
will help you do the analysis.

We recall that if f is a sufficiently smooth function on K, and if FK is the
map from K̂ to K from the previous part, then the multivariable change-of-
variables formula is∫

K

f(x) dx =

∫
K̂

f(FK(x̂))|detDFK | dx̂.

Here, I am abusing notation and letting x̂ and x denote the 2d coordinates on
K̂ and K respectively. Furthermore, if Ei is one of the edges of K, then we can
enumerate the edges of K̂ such that FK(Êi) = Ei. Set Ti = FK |Êi

, which maps

Êi to Ei.
If you did the previous part correctly, you would know that the reference

transformation FK is an affine linear map of the form

FK(x̂) = a+Bx̂

for an invertible matrix B and a vector a, and that DFK = B. Furthermore,
from the change-of-variables formula above, we have that

|K| =
∫
K

1 dx =

∫
K̂

|detDFK | dx̂ = |K̂|| detDFK |,

where |K| is the area of K and |K̂| = 1/2 is the area of K̂. Now since K
is a triangle, its diameter h is its longest side. Since the area of a triangle is
1/2 × base × height, if we set the base to h, then the height can be written as
CKh where 0 < CK < 1 is a constant that depends on the particular triangle
K but does not depend on its diameter h. Thus,

|detDFK | = 2|K| = CKh2.
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Similarly, after parameterizing Êi and Ei as 1d intervals, Ti is of the form

Ti(ŝ) = a+ bŝ

for some scalars a and b, with T ′
i = b. Then the change-of-variables formula on

this edge would be∫
Ei

f(s) ds =

∫
Êi

f(Ti(ŝ))|T ′
i | dŝ =

∫
Êi

f(FK |Êi
(ŝ))|T ′

i | dŝ.

Also, similar to above,

|Ei| =
∫
Ei

1 ds =

∫
Êi

|T ′
i | dŝ = |Êi||T ′

i |.

Since the smallest edge length of K̂ is 1 and the longest edge length of K is its
diameter, we have that

|T ′
i | =

|Ei|
|Êi|

≤ h.

Using this little grab-bag of calculus tricks, prove the result by first showing

∥v∥L2(∂K) ≤ h1/2∥v ◦ FK∥L2(∂K̂).

Then use part 1, part 2, and the calculus tricks above to finish it off. You will
need the chain rule for the gradient:

∇(v ◦ FK) = (DFK)T ((∇v) ◦ FK)

as well as

∥(DFK)T ((∇v) ◦ FK)∥L2(K̂) ≤ ∥DFK∥∥(∇v) ◦ FK∥L2(K̂).
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