MATH 610 Homework 6 Hints

Jordan Hoffart

1. Show unisolvence. That is, suppose that $p \in P$ is such that $\sigma_{i} p=0$ for all i. Since p is a piecewise quadratic, if we label $K_{1}=[0,1 / 2]$ and $K_{2}=$ $[1 / 2,1]$, then there are quadratic polynomials p_{1}, p_{2} such that $\left.p\right|_{K_{i}}=p_{i}$. The dofs will allow you to factor the p_{i}, and the continuity conditions at $x=1 / 2$ give you two more equations

$$
\begin{aligned}
& p_{1}(1 / 2)=p_{2}(1 / 2) \\
& p_{1}^{\prime}(1 / 2)=p_{2}^{\prime}(1 / 2)
\end{aligned}
$$

You will want to use the following factoring results throughout the problem.

Lemma 1. Let q be a quadratic polynomial.
(a) If $q(0)=0$, then $q(x)=x(a x+b)$ for some constants a, b.
(b) If $q^{\prime}(0)=0$, then $q(x)=a x^{2}+b$ for some constants a, b.
(c) If $q(0)=q^{\prime}(0)=0$, then $q(x)=a x^{2}$ for some constant a.
(d) If $q(1)=0$, then $q(x)=(x-1)(a x+b)$ for some constants a, b.
(e) If $q^{\prime}(1)=0$, then $q(x)=a x^{2}-2 a x+b$ for some constants a, b.
(f) If $q(1)=q^{\prime}(1)=0$, then $q(x)=a(x-1)^{2}$ for some constant a.

Proof. Results a and d are just the usual factoring lemma.
Since q is a quadratic polynomial, q^{\prime} is a degree one polynomial. Then from the usual factoring lemma, assumption b implies that $q^{\prime}(x)=c x$ for some constant c. This in turn implies $q(x)=a x^{2}+b$ for some constants a, b (namely, $a=c / 2$).
Similarly, for assumption e, we have that $q^{\prime}(x)=c(x-1)$ for some constant c. This implies that $q(x)=(c / 2) x^{2}-c x+b$ for a constant b. Setting $a=c / 2$ gives us $q(x)=a x^{2}-2 a x+b$.
For item c , we use item b and evaluate at $x=0$ to conclude that $b=0$. For item f , we have from item d that $q(x)=(x-1)(a x+b)$ for some constants a and b. Then by taking a derivative, we have that $q^{\prime}(x)=a x+b+a(x-1)$. Evaluating at $x=1$ tells us that $a+b=0$, so that $q(x)=a(x-1)^{2}$ as desired.

To find the shape functions, we have that shape function $\varphi_{i} \in P$ satisfies $\sigma_{j} \varphi_{i}=\delta_{i j}$ for all i, j. We also have that $\left.\varphi_{i}\right|_{K_{k}}=\varphi_{i, k}$ for some quadratic polynomials $\varphi_{i, k}$. Use the lemma above and the equations $\sigma_{j} \varphi_{i}=0$ to factor the $\varphi_{i, k}$ as much as possible. Then use the equations

$$
\begin{aligned}
\sigma_{i} \varphi_{i} & =1 \\
\varphi_{i, 1}(1 / 2) & =\varphi_{i, 2}(1 / 2) \\
\varphi_{i, 1}^{\prime}(1 / 2) & =\varphi_{i, 2}^{\prime}(1 / 2)
\end{aligned}
$$

to solve for the coefficients that appear from factoring.
2. (a) Use a Poincaré inequality.
(b) Lax-Milgram.
(c) First show Galerkin orthgonality:

$$
a_{k}\left(u-u_{h}, v_{h}\right)=0
$$

for all $v_{h} \in \mathbb{V}_{h}$. Then use coercivity, Galerkin orthogonality, and continuity to show Ceá's lemma: there is a constant C such that

$$
\left\|u-u_{h}\right\|_{1} \leq C \inf _{v_{h} \in \mathbb{V}_{h}}\left\|u-v_{h}\right\|_{1}
$$

for all h. Then use Ceá's lemma and the given approximation property to bound $\left\|u-u_{h}\right\|_{1}^{2}$ above.
(d) Let $g=u-u_{h}=v$. Then

$$
\left\|u-u_{h}\right\|^{2}=(g, v)=a_{k}(w, v)
$$

Now use the fact that a_{k} is symmetric, use Galerkin orthogonality, and use continuity to show that

$$
a_{k}(w, v) \leq C\left\|u-u_{h}\right\|_{1} \inf _{w_{h} \in \mathbb{V}_{h}}\left\|w-w_{h}\right\|_{1} .
$$

Combine these, use Ceá's lemma, apply the approximation result from above, and use the regularity assumption to finish the proof.

