MATH 610 Homework 7 Hints

Jordan Hoffart

Exercise 1

1. This is a standard problem that we have seen before, and this is also a standard Lax-Milgram argument. Determine $V, a: V \times V \rightarrow \mathbb{R}$ and $L: V \rightarrow \mathbb{R}$ such that the weak formulation is to find $u \in V$ such that

$$
a(u, v)=L(v)
$$

for all $v \in V$. Choose an appropriate norm $\|\cdot\|_{V}$ on V, and then show that a is continuous and coercive and L is continuous on V.
For the purposes of a later problem, we make a few remarks about the constant of continuity and the constant of coercivity for a. The constant of continuity for a will depend on q and we denote it by C_{q}. That is,

$$
|a(u, v)| \leq C_{q}\|u\|_{V}\|v\|_{V}
$$

for all $u, v \in V$. Moreover, if you do things correctly, you can show that there is a constant $C>0$ independent of q such that $C_{q} \rightarrow C$ as $q \rightarrow 0$.
The constant of coercivity may also depend on q, and we denote it by β_{q}. That is,

$$
a(u, u) \geq \beta_{q}\|u\|_{V}^{2}
$$

for all $u \in V$. If you choose V correctly, then you can use a Poincaré inequality to show that the coercivity constant can be chosen independently of q. That is, you can find $\beta>0$ independent of q such that

$$
a(u, u) \geq \beta\|u\|_{V}^{2}
$$

for all $u \in V$.
2. Observe that we are doing a conforming approximation and that continuity and coercivity are preserved on subspaces.
3. This is similar to what we did on a previous homework. Show that Galerkin orthogonality holds. Then show that Ceá's Lemma holds: there is a constant $C_{q}^{\prime}>0$ such that

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq C_{q}^{\prime} \inf _{v_{h} \in V_{h}}\left\|u-v_{h}\right\|_{H^{1}(\Omega)}
$$

You can use without proof the following approximation property for V_{h}, which is also a hint from a previous homework: there is a constant $C>0$ such that

$$
\inf _{v_{h} \in V_{h}}\left\|v-v_{h}\right\|_{H^{1}(\Omega)} \leq C h\|v\|_{H^{2}(\Omega)}
$$

for all $v \in H^{2}(\Omega)$. Combining these results will show that there is a constant $c_{1, q}>0$ such that

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \leq c_{1, q} h\|u\|_{H^{2}(\Omega)}
$$

for all $h>0$.
The constant $c_{1, q}$ will in general depend on q, but if you do things correctly, then you can show that there is a constant $c_{1}>0$ such that $c_{1, q} \rightarrow c_{1}$ as $q \rightarrow 0$. This will be needed in a later problem.
4. Show that, since $u \in H^{2}(\Omega)$, then

$$
-\Delta u+q u=f
$$

You can use without proof that if

$$
\int_{\Omega} w \varphi=0
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$, then $w=0$. Then, by working with components, show that the integration by parts lemma for scalar-valued H^{1} functions implies that, for a vector-valued function v with each component $v_{i} \in H^{1}(\Omega)$ and a scalar-valued $w \in H^{1}(\Omega)$, we have the following version of integration-by-parts:

$$
\int_{\Omega} \nabla \cdot v w=-\int_{\Omega} v \cdot \nabla w+\int_{\partial \Omega} n \cdot v w
$$

Combine these to get the formula for α.
Now, to get the error estimate for $\alpha-\alpha_{h}$, use continuity and Galerkin orthogonality to show

$$
\left|\alpha-\alpha_{h}\right| \leq C_{q}^{\prime}\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \inf _{w_{h} \in V_{h}}\left\|w-w_{h}\right\|_{H^{1}(\Omega)}
$$

Then use the previous part and the given approximation property of V_{h} to get

$$
\left|\alpha-\alpha_{h}\right| \leq c_{2, q} h^{2}\|u\|_{H^{2}(\Omega)} .
$$

Here, the constant $c_{2, q}$ will depend on q but not on h or u.
Now, for the case $q=0$, walk back through your arguments for the previous questions and modify them for the $q=0$ case. If you do things correctly, you will be able to show that, with small modifications, all of the arguments will carry through, just now with new constants.

Exercise 2

1. First, since $\left.w_{h}\right|_{K}$ is affine-linear on K, then ∇w_{h} is constant on K. Furthermore, for an edge e contained in K on the boundary, the outward normal n is constant on e. Therefore, we have the following tricks:

$$
\begin{aligned}
\left(\int_{e}\left|n \cdot \nabla w_{h}\right|^{2}\right)^{1 / 2} & =\left.\ell_{e}^{1 / 2}|n|_{e} \cdot \nabla w_{h}\right|_{K} \mid \\
\left(\int_{K}\left|\nabla w_{h}\right|^{2}\right)^{1 / 2} & =|K|^{1 / 2}\left|\nabla w_{h}\right|_{K} \mid
\end{aligned}
$$

where ℓ_{e} is the length of the edge e and $|K|$ is the area of the triangle. Using these tricks and Cauchy-Schwarz, show that

$$
\int_{e} n \cdot \nabla w_{h} v_{h} \leq \frac{\ell_{e}^{1 / 2}}{|K|^{1 / 2}}\left(\int_{K}\left|\nabla w_{h}\right|^{2}\right)^{1 / 2}\left(\int_{e} v_{h}^{2}\right)^{1 / 2}
$$

Now we derive a few useful facts from shape-regularity and quasi-uniformity. Recall that shape-regularity means that there is a constant $C>0$ such that

$$
\frac{h_{K}}{\rho_{K}} \leq C
$$

for all triangles $K \in \mathcal{T}_{h}$ and all $h>0$. Here, h_{K} is the diameter of the triangle and ρ_{K} is the diameter of the largest circle that can fit inside the triangle. Using the area of the circle, this implies that

$$
|K| \geq \frac{1}{2} \pi\left(\rho_{K} / 2\right)^{2} \geq C h_{K}^{2}
$$

for some constant C independent of h and K. Using this, show that

$$
\frac{\ell_{e}}{|K|} \leq \frac{C}{h_{K}}
$$

for some constant C independent of h and K.
Now we recall that quasi-uniformity means that there is a constant $C>0$ such that

$$
\frac{h}{h_{K}} \leq C
$$

for all $K \in \mathcal{T}_{h}$ and all $h>0$. Combine all of our observations to get the final estimate.
2. First, we define a norm on V_{h}. Let

$$
\left\|u_{h}\right\|_{h}=\left(\left\|\nabla u_{h}\right\|_{L^{2}(\Omega)}^{2}+\frac{\alpha}{h}\left\|u_{h}\right\|_{L^{2}(\partial \Omega)}^{2}\right)^{1 / 2}
$$

for all $u_{h} \in V_{h}$. Show that this is a norm on V_{h}. You do not need to prove the triangle inequality or the homogeneity property. I only want to see you show that if $\left\|u_{h}\right\|_{h}=0$, then $u_{h}=0$.
Now, with this norm, show that a_{h} is continuous and coercive and L is continuous on V_{h}, with a_{h} and L being the left-hand and right-hand sides of the given equation we are seeking a solution for. Recall, or accept without proof, that for a finite-dimensional vector space V_{h}, any bilinear form or linear form is automatically continuous on V_{h}. Therefore, I do not want you to show continuity. I only want you to show that a_{h} is coercive on V_{h} with the given norm. For that, observe that

$$
\begin{aligned}
a_{h}\left(u_{h}, u_{h}\right) & =\left\|u_{h}\right\|_{h}^{2}-\int_{\partial \Omega} n \cdot \nabla u_{h} u_{h} \\
& =\frac{1}{2}\left\|u_{h}\right\|_{h}^{2}+\underbrace{\frac{1}{2}\left\|u_{h}\right\|_{h}^{2}-\int_{\partial \Omega} n \cdot \nabla u_{h} u_{h}}_{(*)}
\end{aligned}
$$

Now, let $\mathcal{T}_{h}{ }^{2}$ be the set of all mesh cells that have an edge on the boundary, and let $\mathcal{T}_{h}^{\circ}=\mathcal{T}_{h} \backslash \mathcal{T}_{h}^{\partial}$. For each $K \in \mathcal{T}_{h}^{\partial}$, let $\mathcal{E}_{K}^{\partial}$ be the set of edges of K that lie on the boundary. Observe that we can write

$$
\int_{\Omega}\left|\nabla u_{h}\right|^{2}=\sum_{K \in \mathcal{T}_{h}^{\circ}} \int_{K}\left|\nabla u_{h}\right|^{2}+\sum_{K \in \mathcal{T}_{h}^{\circ}} \int_{K}\left|\nabla u_{h}\right|^{2}
$$

and

$$
\int_{\partial \Omega} \frac{\alpha}{h} u_{h}^{2}-n \cdot \nabla u_{h} u_{h}=\sum_{K \in \mathcal{T}_{h}^{\partial}} \sum_{e \in \mathcal{E}_{K}^{\partial}} \int_{e} \frac{\alpha}{h} u_{h}^{2}-n \cdot \nabla u_{h} u_{h}
$$

Use these observations to start bounding $a_{h}\left(u_{h}, u_{h}\right)$ from below in a way that allows you to apply the previous estimate. If you do things correctly, you can then apply Young's inequality

$$
a^{2}+b^{2} \geq 2 a b
$$

with

$$
a=\left(\int_{K}\left|\nabla u_{h}\right|^{2}\right)^{1 / 2}
$$

and

$$
b=\left(\frac{\alpha}{h} \int_{e} u_{h}^{2}\right)^{1 / 2}
$$

If you do this correctly, then you can conclude that for $\alpha \geq C>0$ with some constant C independent of h, we have that the term $(*)$ above is non-negative, which then implies coercivity. Conclude with Lax-Milgram.

