
MATH 610 Homework 7 Hints

Jordan Hoffart

Exercise 1

1. This is a standard problem that we have seen before, and this is also a
standard Lax-Milgram argument. Determine V , a : V × V → R and
L : V → R such that the weak formulation is to find u ∈ V such that

a(u, v) = L(v)

for all v ∈ V . Choose an appropriate norm ∥ · ∥V on V , and then show
that a is continuous and coercive and L is continuous on V .

For the purposes of a later problem, we make a few remarks about the
constant of continuity and the constant of coercivity for a. The constant
of continuity for a will depend on q and we denote it by Cq. That is,

|a(u, v)| ≤ Cq∥u∥V ∥v∥V

for all u, v ∈ V . Moreover, if you do things correctly, you can show that
there is a constant C > 0 independent of q such that Cq → C as q → 0.

The constant of coercivity may also depend on q, and we denote it by βq.
That is,

a(u, u) ≥ βq∥u∥2V
for all u ∈ V . If you choose V correctly, then you can use a Poincaré in-
equality to show that the coercivity constant can be chosen independently
of q. That is, you can find β > 0 independent of q such that

a(u, u) ≥ β∥u∥2V

for all u ∈ V .

2. Observe that we are doing a conforming approximation and that continuity
and coercivity are preserved on subspaces.

3. This is similar to what we did on a previous homework. Show that
Galerkin orthogonality holds. Then show that Ceá’s Lemma holds: there
is a constant C ′

q > 0 such that

∥u− uh∥H1(Ω) ≤ C ′
q inf
vh∈Vh

∥u− vh∥H1(Ω).
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You can use without proof the following approximation property for Vh,
which is also a hint from a previous homework: there is a constant C > 0
such that

inf
vh∈Vh

∥v − vh∥H1(Ω) ≤ Ch∥v∥H2(Ω)

for all v ∈ H2(Ω). Combining these results will show that there is a
constant c1,q > 0 such that

∥u− uh∥H1(Ω) ≤ c1,qh∥u∥H2(Ω)

for all h > 0.

The constant c1,q will in general depend on q, but if you do things correctly,
then you can show that there is a constant c1 > 0 such that c1,q → c1 as
q → 0. This will be needed in a later problem.

4. Show that, since u ∈ H2(Ω), then

−∆u+ qu = f.

You can use without proof that if∫
Ω

wφ = 0

for all φ ∈ C∞
0 (Ω), then w = 0. Then, by working with components, show

that the integration by parts lemma for scalar-valued H1 functions implies
that, for a vector-valued function v with each component vi ∈ H1(Ω) and
a scalar-valued w ∈ H1(Ω), we have the following version of integration-
by-parts: ∫

Ω

∇ · vw = −
∫
Ω

v · ∇w +

∫
∂Ω

n · vw

Combine these to get the formula for α.

Now, to get the error estimate for α − αh, use continuity and Galerkin
orthogonality to show

|α− αh| ≤ C ′
q∥u− uh∥H1(Ω) inf

wh∈Vh

∥w − wh∥H1(Ω).

Then use the previous part and the given approximation property of Vh

to get
|α− αh| ≤ c2,qh

2∥u∥H2(Ω).

Here, the constant c2,q will depend on q but not on h or u.

Now, for the case q = 0, walk back through your arguments for the pre-
vious questions and modify them for the q = 0 case. If you do things
correctly, you will be able to show that, with small modifications, all of
the arguments will carry through, just now with new constants.
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Exercise 2

1. First, since wh|K is affine-linear on K, then ∇wh is constant on K. Fur-
thermore, for an edge e contained in K on the boundary, the outward
normal n is constant on e. Therefore, we have the following tricks:(∫

e

|n · ∇wh|2
)1/2

= ℓ1/2e |n|e · ∇wh|K |,(∫
K

|∇wh|2
)1/2

= |K|1/2|∇wh|K |,

where ℓe is the length of the edge e and |K| is the area of the triangle.
Using these tricks and Cauchy-Schwarz, show that∫

e

n · ∇whvh ≤ ℓ
1/2
e

|K|1/2

(∫
K

|∇wh|2
)1/2 (∫

e

v2h

)1/2

.

Now we derive a few useful facts from shape-regularity and
quasi-uniformity. Recall that shape-regularity means that there is a con-
stant C > 0 such that

hK

ρK
≤ C

for all triangles K ∈ Th and all h > 0. Here, hK is the diameter of the
triangle and ρK is the diameter of the largest circle that can fit inside the
triangle. Using the area of the circle, this implies that

|K| ≥ 1

2
π(ρK/2)2 ≥ Ch2

K

for some constant C independent of h and K. Using this, show that

ℓe
|K|

≤ C

hK

for some constant C independent of h and K.

Now we recall that quasi-uniformity means that there is a constant C > 0
such that

h

hK
≤ C

for all K ∈ Th and all h > 0. Combine all of our observations to get the
final estimate.

2. First, we define a norm on Vh. Let

∥uh∥h =
(
∥∇uh∥2L2(Ω) +

α

h
∥uh∥2L2(∂Ω)

)1/2
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for all uh ∈ Vh. Show that this is a norm on Vh. You do not need to prove
the triangle inequality or the homogeneity property. I only want to see
you show that if ∥uh∥h = 0, then uh = 0.

Now, with this norm, show that ah is continuous and coercive and L is
continuous on Vh, with ah and L being the left-hand and right-hand sides
of the given equation we are seeking a solution for. Recall, or accept
without proof, that for a finite-dimensional vector space Vh, any bilinear
form or linear form is automatically continuous on Vh. Therefore, I do not
want you to show continuity. I only want you to show that ah is coercive
on Vh with the given norm. For that, observe that

ah(uh, uh) = ∥uh∥2h −
∫
∂Ω

n · ∇uhuh

=
1

2
∥uh∥2h +

1

2
∥uh∥2h −

∫
∂Ω

n · ∇uhuh︸ ︷︷ ︸
(∗)

.

Now, let T ∂
h be the set of all mesh cells that have an edge on the boundary,

and let T ◦
h = Th \ T ∂

h . For each K ∈ T ∂
h , let E∂

K be the set of edges of K
that lie on the boundary. Observe that we can write∫

Ω

|∇uh|2 =
∑

K∈T ◦
h

∫
K

|∇uh|2 +
∑

K∈T ∂
h

∫
K

|∇uh|2

and ∫
∂Ω

α

h
u2
h − n · ∇uhuh =

∑
K∈T ∂

h

∑
e∈E∂

K

∫
e

α

h
u2
h − n · ∇uhuh.

Use these observations to start bounding ah(uh, uh) from below in a way
that allows you to apply the previous estimate. If you do things correctly,
you can then apply Young’s inequality

a2 + b2 ≥ 2ab

with

a =

(∫
K

|∇uh|2
)1/2

and

b =

(
α

h

∫
e

u2
h

)1/2

.

If you do this correctly, then you can conclude that for α ≥ C > 0 with
some constant C independent of h, we have that the term (∗) above is
non-negative, which then implies coercivity. Conclude with Lax-Milgram.
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