Factoring a multivariable polynomial

Jordan Hoffart

Theorem 1. Let p be a real-valued polynomial in 1 variable of degree $k \geq 1$. Then $p(a)=0$ iff there is a polynomial q of degree $k-1$ such that

$$
p(x)=(x-a) q(x)
$$

for all $x \in \mathbb{R}$.
Proof. Fix x and set $h=a-x$. Performing a Taylor expansion of p at x using $x+h$ and using the fact that $p(a)=p(x+h)=0$ tells us that

$$
0=p(x)+(a-x) p^{\prime}(x)+\cdots+\frac{(a-x)^{k}}{k!} p^{(k)}(x)
$$

Thus

$$
p(x)=(x-a) p^{\prime}(x)+\cdots+(-1)^{k+1} \frac{(x-a)^{k}}{k!} p^{(k)}(x)
$$

Setting

$$
q(x)=p^{\prime}(x)-\frac{(x-a)}{2} p^{\prime \prime}(x)+\cdots+(-1)^{k+1} \frac{(x-a)^{k-1}}{k!} p^{(k)}(x)
$$

proves one direction. The other direction holds from evaluating at $x=a$.
Corollary 1. If p is a degree at most n polynomial that vanishes at $n+1$ points, then $p=0$.

Proof. Suppose p vanishes at the points a_{0}, \ldots, a_{n}. Then since p vanishes at a_{n}, we have that $p(x)=\left(x-a_{n}\right) q(x)$ where the degree of q is at most $n-1$. Since a_{n} is distinct from the other a_{i} but p vanishes at the other a_{i}, we must have that q is a degree at most $n-1$ polynomial that vanishes at n distinct points. Repeating this argument inductively allows us to conclude that $p(x)=\left(x-a_{n}\right) \cdots\left(x-a_{1}\right) C$ for some constant C. But $p\left(a_{0}\right)=0$ and a_{0} is distinct from the other a_{i}, so we must have that $C=0$. Thus $p=0$ identically.

Corollary 2. Let p be a real-valued polynomial in m variables of total degree at most n. If p vanishes at $n+1$ points lying along a straight line, then p vanishes on that line.

Proof. Parameterize the line with a degree one vector-valued polynomial $r(t)$. Then $p(r(t))$ is a degree at most n polynomial that vanishes at $n+1$ distinct points t_{0}, \ldots, t_{n}. From the previous corollary, $p(r(t))=0$ for all t, which means that $p=0$ on the line.

Lemma 1. Let p be a polynomial in 2 variables of total degree n. Then for $(x, y) \in \mathbb{R}^{2}$,

$$
p(x+h, y+k)=p(x, y)+\sum_{m=1}^{n} \frac{1}{m!} \sum_{i=0}^{m}\binom{m}{i} \partial_{x}^{m-i} \partial_{y}^{i} p(x, y) h^{m-i} k^{i}
$$

Proof. Let $r(t)=(x+h t, y+k t)$. Then let $q(t)=p(r(t))$. Then q is a polynomial of degree n in t, so by Taylor's Theorem,

$$
q(1)=q(0)+q^{\prime}(0)+\cdots+\frac{1}{n!} q^{(n)}(0)
$$

By the chain rule, we have that

$$
\begin{aligned}
q^{\prime}(0) & =\partial_{x} p(x, y) h+\partial_{y} p(x, y) k, \\
q^{\prime \prime}(0) & =\partial_{x}^{2} p(x, y) h^{2}+2 \partial_{x y}^{2} p(x, y) h k+\partial_{y}^{2} p(x, y) k^{2}, \\
& \vdots \\
q^{(n)}(0) & =\sum_{i=0}^{n}\binom{n}{i} \partial_{x}^{n-i} \partial_{y}^{i} p(x, y) h^{n-i} k^{i} .
\end{aligned}
$$

Putting this altogether gives us the result.
Theorem 2. Let p be a real-valued polynomial in 2 variables of total degree $n \geq 1$. Let L be the line consisting of all points (x, y) such that $a x+b y+c=0$. Then p vanishes on L iff there is a polynomial q of total degree $n-1$ such that

$$
p(x, y)=(a x+b y+c) q(x, y)
$$

for all $(x, y) \in \mathbb{R}^{2}$.
Proof. Suppose without loss of generality that $a, b, c, \neq 0$, as these special cases are easier and handled similarly. Fix $(x, y) \in \mathbb{R}^{2}$ and consider the point $(x,-(a x+$ $c) / b$) on L with the same x coordinate. Then by applying the previous lemma with $h=0$ and $k=-(a x+c) / b-y$, we have that

$$
0=p(x, y)+\sum_{m=1}^{n} \frac{1}{m!} \partial_{y}^{m} p(x, y)(-1)^{m}((a x+c) / b+y)^{m}
$$

Therefore, after rearranging and factoring a term,

$$
p(x, y)=(a x+b y+c) \frac{1}{b} \sum_{m=1}^{n} \frac{(-1)^{m+1}}{m!} \partial_{y}^{m} p(x, y)(y+(a x+c) / b)^{m-1}
$$

Setting

$$
q(x, y)=\frac{1}{b} \sum_{m=1}^{n} \frac{(-1)^{m+1}}{m!} \partial_{y}^{m} p(x, y)(y+(a x+c) / b)^{m-1}
$$

proves one direction. The other direction holds by evaluating at a point on L.

Corollary 3. If a degree $n \geq 1$ polynomial p in 2 variables vanishes at $n+1$ points that lie on a straight line, and if the line is characterized as the set of solutions to $L(x, y)=0$ for a degree one polynomial L, then $p(x, y)=L(x, y) q(x, y)$ for some degree $n-1$ polynomial q.

Corollary 4. If a degree $n \geq 1$ polynomial in 2 variables takes the same value C at $n+1$ points that lie on a straight line, and if the line is characharacterized as the set of solutions to $L(x, y)=0$ for a degree one polynomial L, then $p(x, y)=$ $L(x, y) q(x, y)+C$ for some degree $n-1$ polynomial q.

Proof. Apply the previous corollary to the polynomial $r(x, y)=p(x, y)-C$.

