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1 Equivalent definitions of unisolvence

Let K be a triangle, P a space of polynomials on K, and Σ a set of dofs on P .
We will show two definitiosn of unisolvence are equivalent. First, let’s take the
definition given in the homework, which is more intuitive.

Definition 1. Σ is unisolvent on P if any p ∈ P is uniquely determined by its
values on all σ ∈ Σ. In other words, Σ is unisolvent iff whenever p, q ∈ P are
such that σp = σq for all σ ∈ Σ, we have that p = q.

Now we show that this is equivalent to the more standard definition, which
is easier to check.

Lemma 1. Σ is unisolvent iff whenever p ∈ P satisfies σp = 0 for all p ∈ P ,
we have that p = 0.

Proof. For the forward direction, since the σ are linear, we just take q = 0 in
the definition. For the reverse direction, if p, q ∈ P are such that σp = σq for
all σ ∈ Σ, then once again by linearity we can set r = p − q ∈ P and we have
that σr = 0 for all σ. This then implies that r = 0, so that p = q. This proves
the other direction.

2 Finite element triples and local shape func-
tions

We recall the abstract definition of a finite element as a triple due to Ciarlet.
We do not present the full definition, but only a special case.

Definition 2. Let K be a non-degenerate triangle in R2, P an n-dimensional
space of polynomials on K, and Σ a set of n linear functionals σ1, . . . , σn on
P that we call degrees of freedom (dofs). The triple (K,P,Σ) is called a finite
element if the map

p ∈ P 7→ Φp = (σ1p, . . . , σnp) ∈ Rn

is a linear isomorphism.
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Remark 1. More generally, K can be any domain in Rd for an arbitrary di-
mension d and P can be any n-dimensional space of functions on K (even
vector-valued and not necessarily polynomial), but we do not need that for
now.

The second condition says that, to know which polynomial we are working
with, it suffices to know its values at the dofs. This is the essential idea of
unisolvence. In other words, we have the following.

Lemma 2. Let (K,P,Σ) be a triple as above. Then (K,P,Σ) is a finite element
iff Σ is unisolvent.

Proof. For the forward direction, if σip = 0 for all i, then Φp = 0. Since Φ is
an isomorphism, this implies p = 0, so that Σ is unisolvent.

Conversely, if Σ is unisolvent, then the linear map Φ is injective (Φp =
0 ⇐⇒ σip = 0 for all i =⇒ p = 0). However, since dimP = n = dimRn, the
rank-nullity theorem from linear algebra implies that Φ is also surjective, i.e. it
is a linear isomorphism.

The fact that Φ is a linear isomorphism (equivalently, that Σ is unisolvent)
guarantees the existence and uniqueness of local shape functions with respect
to the dofs. We now recall the definition of such shape functions.

Definition 3. Let (K,P,Σ) be a triple like above (not necessarily a finite
element). Then a set of local shape functions on K with respect to this triple
(if such a set exists) is a set of functions φ1, . . . , φn ∈ P such that

σiφj = δij

for all i, j. We say that the φj are dual to the dofs if they have this property.

As promised, here is how unisolvence guarantees that such shape functions
exist.

Lemma 3. If (K,P,Σ) is a finite element triple (meaning that Σ is unisolvent),
then there is exactly one set of local shape functions for this triple, and they form
a basis for P .

Proof. Let ei be the ith standard basis vector of Rn. Then we set φi = Φ−1ei ∈
P , which is well-defined since Σ is unisolvent. Since Φφi = ei by construction,
reading the coefficients tells us that

σjφi = δij

for all i, j. Thus the φi form a set of local shape functions that are dual to the
σi. This shows existence.

Now we prove uniqueness. If ψi are another set of local shape functions,
then by definition they satisfy

σiψj = δij
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for all i, j. However, this is equivalent to saying that

Φψi = ei

for each i. Since Φ is an isomorphism, this means that ψi = Φ−1ei = φi for all
i. This proves uniqueness.

Finally, we show that the φi are a basis for P . Since each φi is distinct
and there are n = dimP of them, it suffices to show that they are linearly
independent. If ∑

i

ciφi = 0

for some coefficients ci, then by applying σj to both sides, we have that

cj =
∑
i

ciδij =
∑
i

ciσjφi = σj(
∑
i

ciφi) = σj0 = 0.

Thus cj = 0 for all j, so that they are linearly independent and thus a basis for
P .

Thus, unisolvence not only guarantees existence of shape functions, but also
uniqueness and the fact that they form a basis.

3 Finite elements on the reference triangle

Let K be a non-degenerate triangle, let P be a space of polynomials on K,
and let Σ be a set of degrees of freedom (dofs) on P , which is a set of linear
functionals σ : P → R.

Now let K̂ be the reference triangle. Then we can map K̂ to K via an affine
linear map TK : K̂ → K. Furthermore, for any polynomial p ∈ P , p ◦ TK is a
polynomial on K̂ of the same degree.

Let
P̂ = {p ◦ TK : p ∈ P}

be the collection of all such polynomials on K̂. Since K is a non-degenerate
triangle, TK is invertible, which implies that for any p̂ ∈ P̂ , there is a unique
p ∈ P such that

p̂ = p ◦ TK .

In other words, the map ψK : P → P̂ defined by ψKp = p ◦ TK is a linear
isomorphism. In fact, its inverse is just given by

ψ−1
K p̂ = p̂ ◦ T−1

K .

Since ψK is a linear isomorphism, for any σ ∈ Σ, the composition σ ◦ψ−1
K is

a dof on P̂ . Let
Σ̂ = {σ ◦ ψ−1

K : σ ∈ Σ}
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be the collection of all such dofs on P̂ . Similar to P and P̂ , we have that, for
every σ̂ ∈ Σ̂, there is a unique σ ∈ Σ such that

σ̂ = σ ◦ ψ−1
K ,

namely,
σ = σ̂ ◦ ψK .

In other words, the association

σ ∈ Σ 7→ σ ◦ ψ−1
K ∈ Σ̂

is a bijection between Σ and Σ̂ (in fact, it is also a linear isomorphism, but we
don’t need this).

This now gives us two different triples, the triple (K,P,Σ) on K and the

triple (K̂, P̂ , Σ̂) on K̂. With how we defined everything, we have the following
relationship between them.

Lemma 4. Σ is a unisolvent set of dofs on P iff Σ̂ is a unisolvent set of dofs
on P̂ .

Proof. Suppose that Σ is unisolvent on P . From the previous section, this means
that if p ∈ P satisfies σp = 0 for all σ ∈ Σ, then p = 0. Then if p̂ ∈ P̂ is such
that σ̂p̂ = 0 for all σ̂ ∈ Σ̂, we have that

(σ̂ ◦ ψK)(ψ−1
K p̂) = 0

for all σ̂ ∈ Σ̂. From our discussion above, this means that the polynomial
p = ψ−1

K p̂ ∈ P satisfies
σp = 0

for all σ ∈ Σ. Since Σ is unisolvent, this implies that p = 0, which in turn
implies that p̂ = ψKp = 0. Thus Σ̂ is also unisolvent. This proves one direction.
The other direction follows a similar argument.

Setting things up in this way gives us more than just a relation between
unisolvence. It also gives us a relation between the local shape functions on the
elements.

Suppose now that (K,P,Σ) is a finite element triple as in the previous sec-
tion. This means that dimP = n and Σ = {σ1, . . . , σn} is a unisolvent set of
dofs. From how we set everything up, this also implies that (and is in fact equiva-

lent to) (K̂, P̂ , Σ̂) is a finite element triple, with dim P̂ = n and Σ̂ = {σ̂1, . . . , σ̂n}
also being a unisolvent set of dofs.

Also from the previous section, we have a unique set of local shape functions
φ1, . . . , φn for the finite element on K as well as a unique set of local shape
functions φ̂1, . . . , φ̂n on K̂. They are related in very much the same way that
the polynomials in P and P̂ are related.
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Lemma 5. In the setting described above, the local shape functions are related
via

φi ◦ TK = φ̂i

for each i. Equivalently,
ψKφi = φ̂i.

Proof. By uniqueness of the shape functions, it suffices to show that

σ̂i(φj ◦ TK) = δij

for all i, j. However, by unpacking our definitions, we have that σi = σ̂i ◦ ψK .
Therefore,

δij = σiφj = σ̂i(ψKφj) = σ̂i(φj ◦ TK),

which is what we wanted to show.
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