$$
\begin{aligned}
e_{h} & \sim C h^{r} \\
e_{1} & \sim C h_{1}^{r} \quad \frac{e_{1}}{e_{2}} \sim\left(\frac{h_{1}}{h_{2}}\right)^{r} \\
e_{2} & \sim C h_{2}^{r} \frac{\log \left(e_{1} / e_{2}\right) \sim r \log \left(h_{1} / h_{2}\right)}{\frac{\log \left(e_{1} / e_{2}\right)}{\log \left(h_{1} / h_{2}\right)} \sim V_{\uparrow}}{ }^{r} \\
\|f\|_{L^{2}}^{2} & =\int f(x)^{2} d x \sim C h^{2} \\
\left\|f^{\prime}\right\|_{L^{2}}^{2} & =\int f^{\prime}(x)^{2} d x \quad f^{\prime}(x) \sim \frac{f(x+h)-f(x)}{h} \\
& \sim C h^{2(r-1)} \\
\|f\|_{H^{\prime}} & =\left(\|f\|_{L^{2}}^{2}+\left\|f^{\prime}\right\|_{L^{2}}^{2}\right) 1 / 2
\end{aligned}
$$

P4 in CA1

$$
-\left(k u^{\prime}\right)^{\prime}=0
$$

$$
V \stackrel{Y}{=}\left\{u \in H^{\prime} \mid u \text { os) }=0\right\}
$$

$$
\begin{aligned}
-\left(k u^{\prime}\right) & =0 \\
u(0) & =0 \\
u(1) & =\alpha \neq D
\end{aligned}
$$

Gobi: Find wist $w(1)=a$

$$
w(0)=0
$$

$\operatorname{eg} w(x)=\alpha x$
and insert into the ODE

$$
\begin{aligned}
& -\left(k u^{\prime}\right)^{\prime}=-\left(k\left(w^{\prime}+v^{\prime}\right)\right)^{\prime}=-\left(k\left(\alpha+v^{\prime}\right)\right)^{\prime} \\
& \left(=-\alpha k^{\prime}-\left(k v^{\prime}\right)^{\prime}=0\right. \\
& U(0)=W(0)+V(0)=V(0)=0 \\
& U(1)=\underbrace{w(1)}_{=\alpha}+v(1)=\alpha<v(1)=0
\end{aligned}
$$

Conchyion: v satisfies

$$
\int-\left(k_{v^{\prime}}\right)^{\prime}=\alpha k^{\prime}
$$

$*\left\{\begin{array}{l}-(* v)-\stackrel{\cdots \cdots}{=} \\ v(0)=0 \\ v(1)=0\end{array}\right.$
Stop 1: Lift BC V
Step 2: Approximate V wi this problem to get v_{u}
Step 3: Set $u_{n}=w+v_{n}$ to approximate u.

$$
x_{1} \quad h_{i} x_{i+1} \quad \int_{x_{i}}^{x_{i+1}} f(x) d x \sim \sum_{j} f\left(T_{i}\left(q_{j}\right)\right) w_{j} T_{i}^{\prime}\left(q_{j}\right)
$$

