610 HF 4

1. Max principle

$$
\begin{gathered}
\text { If }\left(-\frac{w_{i+1}-2 w_{i}+w_{i-1}}{h^{2}}+\frac{b w_{i+1}-w_{i}}{h}\right) \leq 0 \\
w_{0}=w_{v+1}=0
\end{gathered}
$$

and $h \leq \bar{h}$,
then

$$
\max _{i} w_{i}=\max \left(w_{0}, w_{N+1}\right)=0
$$

2. Minimum principle

If $($ Discretization $) \geq 0$

$$
w_{0}=w_{N+1}=0
$$

and $h \leq \bar{h}$
then $\min _{1} W_{i}=\min \left(W_{0}, W_{\mu+1}\right)=0$
3. The system

$$
\begin{gathered}
-\frac{W_{i+1}-7 W_{i}+W_{i-1}}{h^{2}}+6 \frac{W_{i+1}-W_{i}}{h}=0 \\
W_{i+1}=W_{0}=0
\end{gathered}
$$

only has $W_{i}=D$ as its solution.
4. Taylor's theorem Under certain smucturess assumprans of W

$$
\begin{aligned}
& W(x+h)=W(x)+h W^{\prime}(x)+\frac{h^{2}}{2} W^{\prime \prime}(x) \\
& +\sum_{k} \frac{h^{k}}{k!} w^{(k)}(x) \\
& W(x-h)=W(x)-h W^{\prime}(x)+\frac{h^{2}}{2} W^{\prime \prime}(x) \\
& +\sum_{k} \frac{(-1)^{k} h^{k}}{k!} w^{(k)}(x) \\
& \rightarrow W(x+h)+w(x-h)=2 w(x)+h^{2} w^{\prime \prime}(x) \\
& +O\left(h^{4}\right)
\end{aligned}
$$

P2.

$$
v \in C^{\prime}(K)
$$

Maybe?: $\quad \tilde{v} \hat{e} C^{\prime}(\tilde{K})$ on E_{i}
$i d k$?

$$
\left.\tilde{v}\right|_{K}=\left.v \quad \tilde{v}\right|_{E_{i}}=0
$$

$$
\begin{array}{ll}
1 \\
0 & 1
\end{array}
$$

$$
\begin{gathered}
\max _{x}|v(x)| \leq C\|v\|_{H^{\prime}} \\
|v(0)| \leq C\|v\|_{H^{\prime}}
\end{gathered}
$$

$$
|v(0)|=\leftharpoonup \| \text { "V州 }
$$

$$
|v(, 1)| \leq C\|v\|_{H^{\prime}}
$$

If $V(0)=0$

If $v(1)=0$

General u

$$
\begin{aligned}
& V(x)=\underbrace{x v(x)}_{V_{1}(x)}+\underbrace{(1-x) v(x)}_{v_{2}(x)} \\
& |V(\underline{1})|=\left|V_{1}(1)\right| \leq C\left\|V_{1}^{\prime}\right\|_{L}^{2} \\
& V_{1}^{\prime}(x)=V(x)+x V^{\prime}(x)
\end{aligned}
$$

$$
\begin{aligned}
& -1-x-y=0
\end{aligned}
$$

$$
\begin{aligned}
& \substack{\phi_{1}(x, y) \\
=x} \\
& <\substack{1-x-y=0 \\
2 \phi_{3}(x, y)=\\
y=0 \\
\phi_{2}(x, y)=y}
\end{aligned}
$$

$$
\phi_{1}+\phi_{2}+\phi_{3}=\frac{1}{2}
$$

