WW 4

1. Show \mathcal{F} st when h small

$$
\max _{i}\left|u_{i}^{n}\right| \leq C\|f\|_{\infty}
$$

In the hint, consider

$$
\begin{aligned}
&-\frac{v_{i+1}^{h}-2 v_{i}^{h}+v_{i-1}^{h}}{h^{2}}+\underbrace{\frac{v_{i+1}-v_{i}^{h}}{h}}_{\max _{i}^{b}\left|u_{i}^{h}\right|}=1 \\
&\left.\leadsto \max _{v_{i}^{h}}^{i}\right)
\end{aligned}\|f\|_{\infty}
$$

To finish, show $\exists C$ st when h is small

$$
\max _{i} v_{i}^{h} \leq C
$$

Possible to do, but a little painful.
2.

$$
\varphi(s, t)=(t s, t(1-s))
$$

parametrizes K with $O=[0,1]^{2}$

$$
\begin{aligned}
& \begin{aligned}
\int_{K} f(x, y) d x d y= & \int_{0}^{1} \int_{0}^{1} \varphi(\varphi(s, t)) \underbrace{\left.\right|^{\text {pet }} \varphi(s, t)}_{t} \mid d s d t \\
& (x, y)=\varphi(s, t) \underbrace{}_{t}
\end{aligned} \\
& \operatorname{det} D \varphi(s, t)=\operatorname{det}\left(\begin{array}{cc}
t & s \\
-t & 1-s
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
t & s \\
0 & 1
\end{array}\right. \\
& =t
\end{aligned}
$$

$$
\begin{aligned}
& \text { Idea: realize }
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\int_{0}^{1} \int_{0}^{1} 2 t v(t s, t(1-s))^{2} d t d s+} \\
& \begin{array}{l}
t^{z^{1}} 2 v(t s, t(1-s)) \cdot \widetilde{\sim} \overbrace{}^{\varphi(s, t)} \\
\{\nabla v(\varphi(s, t)) \cdot \tilde{(t s, t(t) s})\} d t d s
\end{array}
\end{aligned}
$$

$$
2\|v\|_{L^{2}(K)}^{2}+2 \underbrace{\int_{K}^{V(x, y)}(\nabla v(x y) \cdot(x, y)) d x d y}_{C-S}
$$

HWy PI

$$
\begin{aligned}
& V x W=\{(v, \omega) \mid v \in V, \omega \in W\} \\
& \underline{\alpha\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)}=\left(\alpha v_{1}+v_{2}, \alpha w_{1}+w_{2}\right) \\
& a:(\underbrace{(V \times W}_{x}) \times(\underbrace{V \times W}_{x \ni x=(v, \omega)}) \rightarrow \mathbb{R} \underline{\text { bilinaw }} \\
& \left.\left.\begin{array}{rl}
a(\left(v_{1}, w_{1}\right), \alpha \underbrace{\left(v_{2}, w_{2}\right)}_{\text {dix ore }}
\end{array}\right)\left(v_{3}, w_{3}\right)\right)=\quad \alpha \dot{a}\left(\left(v_{1}, w_{1}\right),\left(v_{2}, w_{2}\right)\right)
\end{aligned}
$$ and vire-versa

$$
\begin{gathered}
\varphi_{i} \in \mathbb{P}^{2} \text { st } \\
\sigma_{j}\left(\varphi_{i}\right)=\delta_{i j} \\
\uparrow
\end{gathered}
$$

$$
\begin{aligned}
& \varphi_{i}=L(x, y) \psi_{i} \rightarrow=0 \text { at } \quad \varphi_{i}(\text { point })=1 \\
& { }_{L}^{\text {opts }} \text { on, } \varphi_{i}(\text { other paints })=0 \\
& \text { dey } \leq 1 \longrightarrow \psi_{i}=0 \text { on } L^{\prime} \\
& \psi_{i}=L^{\prime}(x y) C \text { Factor! } \\
& \varphi_{i}=L(x y) L^{\prime}(x, y) C \leftarrow
\end{aligned}
$$

