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1 Total Derivatives

Definition 1. Let V andW be finite dimensional normed vector spaces. Let U
be an open subset of V . We say that a function F : U → W is differentiable
at a ∈ U if there is a linear map L : V →W such that

lim
v→0

|F (a+ v)− F (a)− Lv|
|v|

= 0. (1)

Remark 1. Equivalently, F : U → W is differentiable at a ∈ U iff there is a
linear map L : V →W such that

lim
v→a

|F (v)− F (a)− L(v − a)|
|v − a|

= 0.

Proposition 1. If F : U → W is differentiable at a ∈ U , then the linear map
L satisfying equation (1) is unique.
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Proof. Let L and L′ be two such linear maps. Then L0 = 0 = L′0 by linearity.
Now let v ∈ V − {0}, and let ϵ > 0. Then there is δ > 0 such that when
0 < |u| < δ,

|F (a+ u)− F (a)− Lu|
|u|

< ϵ

and
|F (a+ u)− F (a)− L′u|

|u|
< ϵ.

Let t = δ
2|v| and let u = tv. Then

0 < |u| = t|v| = δ

2
< δ.

Therefore

|Lv − L′v| ≤ |u|
t

(
|Lu− F (a+ u) + F (a)|

|u|
+

|F (a+ u)− F (a)− L′u|
|u|

)
< 2ϵ|v|

for all ϵ > 0. Hence Lv = L′v for all v ∈ V , so L is unique.

Definition 2. If F is differentiable at a, the linear map L satisfying equation
(1) is denoted by DF (a) and is called the total derivative of F at a.

Remark 2. Equation (1) can be rewritten as

F (a+ v) = F (a) +DF (a)v +RF (v) (2)

where RF (v) = F (a+ v)− F (a)−DF (a)v satisfies |R(v)|/|v| → 0 as v → 0.

Proposition 2. Let V , W , and X be finite dimensional vector spaces. Let
U ⊂ V be open. Let a ∈ U . Let F,G : U →W , and let f, g : U → R. Then

1. If F is differentiable at a, then F is continuous at a.

2. If F is constant, then F is differentiable at a and DF (a) = 0.

3. If F and G are differentiable at a, and if c ∈ R, then cF+G is differentiable
at a and

D(cF +G)(a) = cDF (a) +DG(a).

4. If f and g are differentiable at a, then fg is differentiable at a, and

D(fg)(a) = f(a)Dg(a) + g(a)Df(a).

5. If f and g are differentiable at a, and if g(a) ̸= 0, then f/g is differentiable
at a and

D(f/g)(a) =
g(a)Df(a)− f(a)Dg(a)

g(a)2
.
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6. If T : V → W is linear, then T is differentiable at every v ∈ V , with
DT (v) = T .

7. If B : V ×W → X is bilinear, then B is differentiable at every (v, w) ∈
V ×W , and

DB(v, w)(x, y) = B(v, y) +B(x,w).

Proof. 1. Since a ∈ U is open, there is a neighborhood N of 0 such that
a+ v ∈ U for all v ∈ N . Then for any v ∈ N − {0},

|F (a+ v)− F (a)| = |F (a+ v)− F (a)−DF (a)v|
|v|

|v|+ |DF (a)v|

≤ |v|(|R(v)|/|v|+ |DF (a)|)

Since |R(v)|/|v|+ |DF (a)| → |DF (a)| and |v| → 0 as v → 0, we conclude
that F is continuous at a.

2. Since a ∈ U is open, there is a neighborhood N of 0 such that a+ v ∈ U
for all v ∈ N . Then for any v ∈ N − {0},

|F (a+ v)− F (a)− 0v|
|v|

= 0.

Therefore 0 : V → W satisfies the differentiability condition, so F is
differentiable at a. By uniqueness, DF (a) = 0.

3. Since a ∈ U is open, there is a neighborhood N of 0 such that a+ v ∈ U
for all v ∈ N . Then the conclusion follows from the fact that

|N(v)|
|v|

≤ c
|RF (v)|

|v|
+

|RG(v)|
|v|

for all v ∈ N − {0}, where

N(v) = (cF +G)(a+ v)− (cF +G)(a)− cDF (a)v −DG(a)v,

RF (v) = F (a+v)−F (a)−DF (a)v, and RG(v) = G(a+v)−G(a)−DG(a)v.

4. Since a ∈ U is open, there is a neighborhood N of 0 such that a+ v ∈ U
for all v ∈ N . Let v ∈ N − {0}. We have that

f(a+ v) = f(a) +Df(a)v +Rf (v)

where
Rf (v) = f(a+ v)− f(a)−Df(a)v.

Similarly,
g(a+ v) = g(a) +Dg(a)v +Rg(v)

where
Rg(v) = g(a+ v)− g(a)−Dg(a)v.
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Hence

(fg)(a+ v) = (fg)(a) + f(a)Dg(a)v + g(a)Df(a)v +R(v),

where

R(v) = f(a)Rg(v) +Df(a)vDg(a)v +Df(a)vRg(v)+

Rf (v)g(a) +Rf (v)Dg(a)v +Rf (v)Rg(v).

We have that |Rg(v)|/|v| → 0 and |Rf (v)|/|v| → 0 as v → 0. We also have
that |Rg(v)| → 0 and

|Df(a)vDg(a)v|/|v| ≤ |Df(a)||Dg(a)||v| → 0

as v → 0. From this, we see that |R(v)|/|v| → 0 as v → 0. Since we also
have that

R(v) = (fg)(a+ v)− (fg)(a)− f(a)Dg(a)v − g(a)Df(a)v,

this proves the result.

5. Since a ∈ U ⊂ V is open, since g(a) ̸= 0, and since g is continuous at a,
there is an open neighborhoodN ⊂ V of 0 such that a+v ∈ U for all v ∈ N
and g(a+ v) ̸= 0 for all v ∈ N . Then a+N = {a+ v : v ∈ N} ⊂ U is an
open neighborhood of a. Let h : a+N → R be defined by h(u) = 1/g(u)
for all u ∈ a+N . We will show that h is differentiable at a and

Dh(a) = − 1

g(a)2
Dg(a).

Indeed, we have that for any v ∈ N − {0},

h(a+ v)− h(a) = 1/g(a+ v)− 1/g(a)

=
g(a)− g(a+ v)

g(a)g(a+ v)

= − 1

g(a)g(a+ v)
(Dg(a)v +Rg(v)).

Then

h(a+ v)− h(a) +
1

g(a)2
Dg(a)v = R(v),

where

R(v) =

(
1

g(a)2
− 1

g(a)g(a+ v)

)
Dg(a)v − 1

g(a)g(a+ v)
Rg(v).

Since
|Dg(a)v|/|v| ≤ |Dg(a)|
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and since |Rg(v)|/|v| → 0 and∣∣∣∣ 1

g(a)2
− 1

g(a)g(a+ v)

∣∣∣∣ → 0

as v → 0, we conclude that∣∣∣h(a+ v)− h(a) + 1
g(a)2Dg(a)v

∣∣∣
|v|

=
|R(v)|
|v|

→ 0

as v → 0. Hence h is differentiable at a and

Dh(a) = − 1

g(a)2
Dg(a).

Now since f/g = fh on a+N , we have that f/g is differentiable at a and

D(f/g)(a) =
1

g(a)
Df(a)− f(a)

g(a)2
Dg(a) =

g(a)Df(a)− f(a)Dg(a)

g(a)2
.

6. For any v ∈ V , any v′ ∈ V − {0},

|T (v − v′)− Tv − Tv′|
|v′|

= 0,

so the result follows immediately.

7. For any v ∈ V , w ∈W , (x, y) ∈ V ×W − {(0, 0)}, we have that

|B(v + x,w + y)−B(v, w)−B(v, y)−B(x,w)|
|(x, y)|

=
|B(x, y)|
|(x, y)|

.

We will show that |B(x, y)|/|(x, y)| → 0 as (x, y) → 0, which will prove
the result.

First, suppose that {e1, . . . , en} is a basis for V and {f1, . . . , fm} is a
basis forW . Suppose that V andW are endowed with the ℓ∞-norms with
respect to these bases, ie

|v| = |
∑
i

αiei| = max
i

|αi|

for all v =
∑

i αiei in V and

|w| = |
∑
j

βjfj | = max
j

|βj |

for all w =
∑

j βjfj ∈ W . Also suppose that we have that ℓ∞ product
norm on V ×W , ie |(v, w)| = max{|v|, |w|} for all v ∈ V , w ∈W . Let x =
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∑
i xiei and y =

∑
j yjfj be arbitrary such that (x, y) ∈ V ×W −{(0, 0)}.

Then we have that

B(x, y) =
∑
i,j

xiyjB(ei, fj),

so that

|B(x, y)|/|(x, y)| ≤ nmmax
i,j

|B(ei, fj)|
|x||y|

max{|x|, |y|}
≤ nmmax

i,j
|B(ei, fj)|min{|x|, |y|}

and the last quantity converges to 0 as (x, y) converges to (0, 0). This
proves the result when V , W , and V × W all have the norms that we
specified. Now if V , W , and V ×W all have arbitrary norms on them,
since all norms on a finite dimensional vector space are equivalent, the
general result follows from what we just showed. In other words,

|B(x, y)|/|(x, y)| → 0

as (x, y) → (0, 0) independent of choice of norms for V , W , V ×W , and
X. This completes the proof.

Proposition 3 (Chain Rule for Total Derivatives). Let V , W , and X be finite
dimensional vector spaces. Let U ⊂ V and Ũ ⊂ W be open subsets. Let F :
U → Ũ and G : Ũ → X. If F is differentiable at a ∈ U and G is differentiable
at F (a) ∈ Ũ , then G ◦ F is differentiable at a with

D(G ◦ F )(a) = DG(F (a)) ◦DF (a).

Proof. Since F (a) ∈ Ũ is open, there is an open neighborhood Ñ ⊂W of 0 such
that F (a) + w ∈ Ũ for all w ∈ Ñ . Hence F (a) + Ñ = {F (a) + w : w ∈ N} ⊂ Ũ
is an open neighborhood of F (a). Since F is continuous at a and a ∈ U is
open, there is an open neighborhood N ⊂ V of 0 such that a + v ∈ U and
F (a+ v) ∈ F (a) + Ñ for all v ∈ N . Then for any v ∈ N − {0}, we have that

w(v) = F (a+ v)− F (a) = DF (a)v +RF (v) ∈ Ñ .

Therefore, for v ∈ N − {0} such that w(v) ̸= 0,

G(F (a+ v))−G(F (a)) = G(F (a) + w(v))−G(F (a))

= DG(F (a))w(v) +RG(w(v))

= DG(F (a))DF (a)v +DG(F (a))RF (v) +RG(w(v)).

Hence
G(F (a+ v))−G(F (a))−DG(F (a))DF (a)v = R(v),
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where
R(v) = DG(F (a))RF (v) +RG(w(v)).

We have that |RF (v)|/|v| → 0 as v → 0. We also have that

|RG(w(v))|
|v|

=
|RG(w(v))|

|v|(|DF (a)|+ |RF (v)|/|v|)

(
|DF (a)|+ |RF (v)|

|v|

)
≤ |RG(w(v))|

|DF (a)v +RF (v)|

(
|DF (a)|+ |RF (v)|

|v|

)
=

|RG(w(v))|
|w(v)|

(
|DF (a)|+ |RF (v)|

|v|

)
.

Now since w(v) → 0 as v → 0, and since |RG(w)|/|w| → 0 as w → 0, the
inequality above shows that

|G(F (a+ v))−G(F (a))−DG(F (a))DF (a)v|
|v|

=
|R(v)|
|v|

→ 0

as v → 0. This completes the proof.

2 Partial Derivatives

Definition 3. Let U ⊂ Rn be open, and let f : U → R. Let e1, . . . , en be the
standard basis vectors of Rn. For any a ∈ U and any j ∈ {1, . . . , n}, the jth
partial derivative of f at a is

∂f

∂xj
(a) = lim

h→0

f(a+ hej)− f(a)

h

if the limit exists.

Remark 3. We can use any symbol in place of x in the notation above.

Definition 4. Let U ⊂ Rn be open, and let F : U → Rm. The partial
derivatives of F are the partial derivatives of the component functions F i :
U → R where F (x) = (F 1(x), . . . , Fm(x)) for all x ∈ U . The matrix (∂F i/∂xj)
of partial derivatives is called the Jacobian matrix of F , and its determinant
is the Jacobian determinant of F .

Proposition 4. Let U ⊂ Rn be open, and let F : U → Rm. If F is differen-
tiable, then each of its partial derivatives exist at all points of U , and for each
a ∈ U , the matrix representing DF (a) with respect to the standard bases of Rn

and Rm is the Jacobian matrix (∂F i/∂xj(a)).

Proof. Let a ∈ U and let j ∈ {1, . . . , n}. Since U is open, there is an ϵ > 0 such
that when |t| < ϵ, a+ tej ∈ U . Then for all 0 < |t| < ϵ,

F (a+ tej)− F (a) = tDF (a)ej +RF (tej).

7



Then for each i,

F i(a+ tej)− F i(a)

t
= (DF (a))ij +

RF (tej)
i

t
. (3)

Observe that for any norm | · | on Rm, there is a constant C > 0 such that
for all x ∈ Rm, all i ∈ {1, . . . ,m}, |xi| ≤ C|x|. Indeed, this holds for C = 1
with the ℓ∞ norm on Rm, and since all norms are equivalent on Rm, the general
result follows. In particular, there is a constant C > 0 such that

|RF (tej)
i|/|t| ≤ C|RF (tej)|/|tej |

for all 0 < |t| < ϵ.
Then since

|RF (tej)|
|tej |

→ 0

as t→ 0, taking the limit as t→ 0 in equation (3) implies that

∂F i

∂xj
(a) = (DF (a))ij

for all i, j, and a as desired.

Proposition 5. Let U ⊂ Rn be open, and let F : U → Rm. Then F is
differentiable iff each component function F i : U → R is differentiable, where
the F i satisfy F (x) = (F 1(x), . . . , Fn(x)) for all x ∈ U .

Proof. If F is differentiable, then for each a ∈ U , the linear map DF (a) : Rn →
Rm exists, and its standard matrix is given by

(DF (a))ij =
∂F i

∂xj
(a).

Then since a ∈ U is open, there is an ϵ > 0 such that a+ v ∈ U for all |v| < ϵ.
Then for each i and each 0 < |v| < ϵ, we have that

F i(a+ v)− F i(a) =
∑
j

∂F i

∂xj
(a)vj +RF (v)

i.

Then the linear map v 7→
∑

j ∂F
i/∂xj(a)vj from Rn to R satisfies

F i(a+ v)− F i(a)−
∑
j

∂F i

∂xj
(a)vj = RF (v)

i (4)

for all 0 < |v| < ϵ. From equivalence of norms on Rm, there is a constant C > 0
such that

|RF (v)
i|/|v| ≤ C|RF (v)|/|v| → 0

as v → 0. Therefore equation (4) implies that each F i is differentiable at each
a ∈ U .
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Conversely, if each F i is differentiable, then for each a ∈ U , the linear map
DF i(a) : Rn → R exists and its standard matrix is given by

(DF i(a))j =
∂F i

∂xj
(a).

Then for a ∈ U and for v sufficiently small where a+ v ∈ U ,

F i(a+ v)− F i(a)−
∑
j

∂F i

∂xj
(a)vj = RF i(v)

for each i, where |RF i(v)|/|v| → 0 as v → 0. For each v sufficiently small, let
R(v) be the vector in Rm given by

R(v)i = RF i(v).

Also, for each a ∈ U , let L(a) : Rn → Rm be the linear map given by

(L(a)v)i =
∑
j

∂F i

∂xj
(a)vj

for all i. Then we have that for all a ∈ U , for all v sufficiently small,

F (a+ v)− F (a)− L(a)v = R(v).

Observe that |R(v)|/|v| → 0 as v → 0 when Rm is given the ℓ1 norm. Since all
norms on Rm are equivalent, we then conclude that |R(v)|/|v| → 0 independent
of choice of norms on Rm and Rn. Hence F is differentiable at all a ∈ U .

Remark 4. The proof of the previous proposition also shows that

(DF (a))ij = (DF i(a))j ,

that is, the i-th row of the standard matrix ofDF (a) corresponds to the standard
matrix of DF i(a), provided that either F is differentiable at a or all F i are
differentiable at a.

3 Continuously Differentiable Functions

Definition 5. Let U ⊂ Rn be open. If F : U → Rm is a function where
each of its partial derivatives exist at all points of U , and each of the functions
∂F i/∂xj : U → R so defined are continuous, then F is said to be of class C1

or continuously differentiable.

Remark 5. It follows immediately from the definitions that a function F : U →
Rm defined on an open subset U of Rn is C1 iff each F i : U → R is C1.

Proposition 6. Let U ⊂ Rn be open. If F : U → Rm is C1, then F is
differentiable at each point of U .
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Proof. First suppose that m = 1 and n = 2. Let a = (a1, a2) ∈ U . Since U is
open, there is an ϵ > 0 such that when v ∈ B(0, ϵ) − {0}, a + v ∈ U . Given
v = (v1, v2) such that 0 < |v| < ϵ, we have that

F (a+v)−F (a) = [F (a1+v1, a2+v2)−F (a1, a2+v2)]+[F (a1, a2+v2)−F (a1, a2)].

Since F is C1, we can apply the mean value theorem twice to conclude that
there is w1(v) between a1 and a1 + v1 and w2(v) between a2 and a2 + v2 such
that

F (a+ v)− F (a) =
∂F

∂x1
(w1(v), a2 + v2)v1 +

∂F

∂x2
(a1, w2(v))v2.

This defines functions w1, w2 : B(0, ϵ) − {0} → R such that w1(v) → a1 and
w2(v) → a2 as v → 0. Now let

R(v) =

(
∂F

∂x1
(w1(v), a2 + v2)− ∂F

∂x1
(a1, a2)

)
v1 +(

∂F

∂x2
(a1, w2(v))− ∂F

∂x2
(a1, a2)

)
v2,

so that

F (a+ v)− F (a)− ∂F

∂x1
(a)v1 − ∂F

∂x2
(a)v2 = R(v).

From the equivalence of norms on Rn, we have that there is a C > 0 such that

|R(v)|
|v|

≤ C

∣∣∣∣ ∂F∂x1 (w1(v), a2 + v2)− ∂F

∂x1
(a1, a2)

∣∣∣∣+
C

∣∣∣∣ ∂F∂x2 (a1, w2(v))− ∂F

∂x2
(a1, a2)

∣∣∣∣
and, by continuity of the partial derivatives, both terms on the right converge to
0 as v → 0. Hence |R(v)|/|v| → 0 as v → 0, so this shows that F is differentiable.
Therefore the result holds for m = 1 and n = 2.

The case for m = 1 and general n is a straightforward generalization of
the argument we just gave, just with more notation: write F (a + v) − F (a)
as a telescoping sum and apply the mean value theorem to each of the relevant
pieces. The case for arbitrary m and n proceeds as follows: If F is C1, then each
of the component functions F i : U → R are C1, so we can apply our m = 1 case
to each component function to conclude that each F i : U → R is differentiable.
But then that implies that F : U → Rm is differentiable. This completes the
proof.

Remark 6. If U is an open subset of Rn and F : U → Rm is C1, then since the
matrix representing DF has entries given by the partial derivatives of F , we
have that DF : U → L(Rn,Rm) ∼= Rnm is continuous.
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4 Higher Order Derivatives

Definition 6. Let U ⊂ Rn be open and F : U → Rm. If F is of class C1, then
we can differentiate the partial derivatives to obtain second-order partial
derivatives

∂2F i

∂xk∂xj
=

∂

∂xk

(
∂F i

∂xj

)
whenever they exist. Continuing in this way, the partial derivatives of F of
order k are the partial derivatives of those of order k − 1 whenever they exist.

Definition 7. Let U ⊂ Rn be open and let F : U → Rm. We say that F is of
class Ck or k times continuously differentiable if all the partial derivatives
of F of order less than or equal to k exist and are continuous functions on U .
In particular, C0 is the class of continuous functions.

Remark 7. Let U ⊂ Rn be open and F : U → Rm. Then F is Ck iff for all
x ∈ U , there is an open neighborhood N of x such that F : N ∩U → Rm is Ck.

Remark 8. If a function is Ck+1, then it is also Ck. Furthermore, a function
is Ck+1 iff its partial derivatives are Ck, and a function is Ck iff all of its
component functions are Ck.

Definition 8. A function that is class Ck for all k ≥ 0 is said to be class C∞,
smooth, or infinitely differentiable.

Remark 9. A function is smooth iff its partial derivatives are smooth iff its
partial derivatives of all orders are smooth iff all of its component functions are
smooth.

Proposition 7. Let U ⊂ Rn be open, and let F : U → Rm be C2. Then
the mixed second-order partial derivatives of F do not depend on the order of
differentiation:

∂2F i

∂xj∂xk
=

∂2F i

∂xk∂xj

for all i, j, and k.

Proof. Let a ∈ U . Since U is open, there is ϵ > 0 such that when v ∈ Bn(0, ϵ),
a+ v ∈ U . Let ∆ : B1(0, ϵ/2) → R be defined by

∆(s) = F i(a+ sej + sek)− F i(a+ sej)− F (a+ sek) + F (a).

Let Gs : B
1(0, ϵ/2) → R be defined by

Gs(t) = F i(a+ sej + tek)− F i(a+ tek)

for each s ∈ B1(0, ϵ/2). Then each Gs is C1, and

∆(s) = Gs(s)−Gs(0)
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for all s ∈ B1(0, ϵ/2). By the mean value theorem, there is δ : B1(0, ϵ/2) → R
such that 0 < |δ(s)| < |s| for all s ∈ B1(0, ϵ/2) and

∆(s)

s
= G′

s(δ(s)) =
∂F i

∂xk
(a+ sej + δ(s)ek)−

∂F

∂xk
(a+ δ(s)ek) (5)

for all s ∈ B1(0, ϵ/2)− {0}. Since ∂F i/∂xk is C1, and hence differentiable, we
have that

∂F i

∂xk
(a+sej+δ(s)ek) =

∂F i

∂xk
(a)+

∂2F i

∂xj∂xk
(a)s+

∂2F i

∂xk∂xk
(a)δ(s)+R(sej+δ(s)ek)

and
∂F i

∂xk
(a+ δ(s)ek) =

∂F i

∂xk
(a) +

∂2F i

∂xk∂xk
(a)δ(s) +R(δ(s)ek)

for all s ∈ B1(0, ϵ/2). Substituting our last two equations into equation (5)
implies that

∆(s)

s2
− ∂2F i

∂xj∂xk
(a) =

R(sej + δ(s)ek)

s
− R(δ(s)ek)

s
(6)

for all s ∈ B1(0, ϵ/2)− {0}.
Now since |δ(s)| ≤ |s| for each s, we have that

|R(δ(s)ek)|
|s|

≤ |R(δ(s)ek)|
|δ(s)ek|

→ 0 (7)

as s → 0. If we give Rn the ℓ∞ norm, we also have that |sej + δ(s)ek|∞ ≤ |s|.
Therefore, by equivalence of norms, for the given arbitrary norm on Rn there is
a constant C > 0 such that

|sej + δ(s)ek| ≤ C|s|

for all s. Therefore

|R(sej + δ(s)ek)|
|s|

≤ C
|R(sej + δ(s)ek)|
|sej + δ(s)ek|

→ 0 (8)

as s→ 0. Equation (6) and inequalities (7) and (8) then imply that

∆(s)

s2
→ ∂2F i

∂xj∂xk
(a)

as s→ 0.
Now for each s ∈ B1(0, ϵ/2), let Hs : B

1(0, ϵ/2) → R be defined by

Hs(t) = F i(a+ tej + sek)− F i(a+ tej).

Then by following a similar argument as before, using Hs in place of Gs and
∂F i/∂xj in place of ∂F i/∂xk, we can also show that

∆(s)

s2
→ ∂2F i

∂xk∂xj
(a)

as s → 0. Hence the second order mixed partials agree at all a ∈ U , which is
what we wanted to show.

12



Corollary 1. If U ⊂ Rn is open and F : U → Rm is smooth, then the mixed
partials of order k + 2 do not depend on the order of differentiation for all k:

∂k+2F i

∂xjk+2 · · · ∂xj1
=

∂k+2F i

∂xjσ(k+2) · · · ∂xjσ(1)

for all i, all k, all (k + 2)-tuples (j1, . . . , jk+2) where each 1 ≤ jl ≤ n, and all
permutations σ : {1, . . . , k + 2} → {1, . . . , k + 2}.
Proof. We prove this by induction. The base case k = 0 was proved by the last
proposition. Suppose this holds for some k ≥ 0. Now let (j1, . . . , jk+3) be a
(k+3)-tuple where each 1 ≤ jl ≤ k+3, and let σ : {1, . . . , k+3} → {1, . . . , k+3}
be a permutation. If σ(k + 3) = k + 3, then σ : {1, . . . , k + 2} → {1, . . . , k + 2}
is a permutation. Therefore, for any i, we have that

∂k+3F i

∂xjσ(k+3) · · · ∂xjσ(1)
=

∂

∂xjk+3

(
∂k+2F i

∂xjσ(k+2) · · · ∂xjσ(1)

)
=

∂

∂xjk+3

(
∂k+2F i

∂xjk+2 · · · ∂xj1

)
=

∂k+3F i

∂xjk+3 · · · ∂xj1
.

If instead k+3 ∈ σ({1, . . . , k+2}), then we also have that σ(k+3) ∈ {1, . . . , k+
2}. Let l ∈ {1, . . . , k + 2} be such that σ(l) = k + 3. For convenience, assume
that 1 < l < k + 2. Then for all i,

∂k+3F i

∂xjσ(k+3) · · · ∂xjσ(1)
=

∂

∂xjσ(k+3)

(
∂k+2F i

∂xjσ(k+2) · · · ∂xjσ(1)

)
=

∂

∂xjσ(k+3)

(
∂k+2F i

∂xjσ(l)∂xjσ(k+2) · · · ∂xjσ(1)

)
=

∂2

∂xjσ(k+3)∂xjσ(l)

(
∂k+1F i

∂xjσ(k+2) · · · ∂xjσ(1)

)
=

∂2

∂xjσ(l)∂xjσ(k+3)

(
∂k+1F i

∂xjσ(k+2) · · · ∂xjσ(1)

)
=

∂

∂xjk+3

(
∂k+2F i

∂xjσ(k+3) · · · ∂xjσ(1)

)
=

∂k+3F i

∂xjk+3 · · · ∂xj1
.

The case when l = 1 or l = k + 2 follows almost exactly as above, just with
some slight modifications to the notation. Therefore the proof is finished by
induction.

5 Diffeomorphisms

Definition 9. If U and V are open subsets of Euclidean space, a function
F : U → V is a diffeomorphism if it is smooth, bijective, and its inverse is

13



smooth.

Remark 10. Every diffeomorphism between open subsets of Euclidean space is
a homeomorphism.

Proposition 8. Let U ⊂ Rn, V ⊂ Rm, be open, and let F : U → V be a
diffeomorphism. Then m = n, and for each a ∈ U , the total derivative DF (a)
is invertible with DF (a)−1 = D(F−1)(F (a)).

Proof. Since F is a diffeomorphism, in particular F and F−1 are both C1 and
hence differentiable, so DF (a) exists at each a ∈ U and D(F−1)(b) exists at
each b ∈ V . Hence F−1 ◦ F = IU is differentiable, and it is easy to verify that

DIU (a) = IRn ,

so
IRn = D(F−1 ◦ F )(a) = D(F−1)(F (a)) ◦DF (a).

Similarly, since F ◦ F−1 = IV , we also have that

IRm = DF (a) ◦D(F−1)(F (a)).

Hence DF (a) is an invertible linear map from Rn to Rm with inverse

DF (a)−1 = D(F−1)(F (a)),

and thus n = m.

6 Smooth Real-Valued Functions

Definition 10. If U ⊂ Rn is open, we let Ck(U) denote the set of all Ck

functions from U to R, and we let C∞(U) denote the set of all smooth functions
from U to R. Sums, scalar multiples, and products are all defined pointwise:
given f, g : U → R and c ∈ R,

(f + g)(x) = f(x) + g(x),

(cf)(x) = c(f(x)),

(fg)(x) = f(x)g(x).

Proposition 9. Let U ⊂ Rn be open and let f, g ∈ C∞(U) and c ∈ R. Then
f + g, cf , and fg all belong to C∞(U). Thus C∞(U) is a commutative ring
and a commutative and associative algebra over R.

Proof. From the definitions:

∂(cf + g)

∂xj
(x) = c

∂f

∂xj
(x) +

∂g

∂xj
(x)

14



for all j and all x. Thus cf + g is C1. In fact, this shows that taking partial
derivatives is a linear operation. Now if cf+g is C1, C2, . . . , Ck, and if an order
k partial derivative of f + g is of the form

∂k(cf + g)

∂xjk · · · ∂xj1
(x) = c

∂kf

∂xjk · · · ∂xj1
(x) +

∂kg

∂xjk · · · ∂xj1
(x),

then an order k + 1 partial derivative of cf + g is of the form

∂k+1(cf + g)

∂xjk+1 · · · ∂xj1
(x) = c

∂k+1f

∂xjk+1 · · · ∂xj1
(x) +

∂k+1g

∂xjk+1 · · · ∂xj1
(x)

which is continuous. Hence, by induction, cf +g is smooth. Taking c = 1 shows
that f + g is smooth for all smooth f and g, and taking g = 0 shows that cf is
smooth for all c and all smooth f .

Now

∂(fg)

∂xj
(x) = lim

h→0

f(x+ hej)g(x+ hej)− f(x)g(x)

h

= lim
h→0

(
f(x+ hej)− f(x)

h
g(x+ hej) + f(x)

g(x+ hej)− g(x)

h

)
=

∂f

∂xj
(x)g(x) + f(x)

∂g

∂xj
(x)

for all x and all j, so we conclude that fg is C1, and the partial derivatives of
fg of order 1 are sums of products of partial derivatives of f and g of order at
most 1.

Now suppose that fg is C1, C2, . . . , Ck and the partial derivatives of fg of
order k are sums of products of partial derivatives of f and g of order at most
k. A particular term in a kth order partial derivative of fg is of the form

∂if

∂xji · · · ∂xj1
(x)

∂lg

∂xjl · · · ∂xj1
(x)

where 0 ≤ i, l ≤ k (a partial derivative of order 0 is just f(x) or g(x)). Therefore,
differentiating one of these terms gives us a term of the form

∂i+1f

∂xj∂xji · · · ∂xj1
(x)

∂lg

∂xjl · · · ∂xj1
(x) +

∂if

∂xji · · · ∂xj1
(x)

∂l+1g

∂xj∂xjl · · · ∂xj1
(x).

Since taking partial derivatives is a linear operation, differentiating an order k
partial derivative of fg to obtain an order k+1 partial derivative of fg will give
us some of terms like above, which shows that all order k+1 partial derivatives
of fg are continuous. Hence, by induction, fg is smooth when f and g are
smooth.

It immediately follows from the algebraic properties of R that C∞(U) is
a commutative ring and a commutative and associative algebra over R. The
additive identity is the 0 function, the multiplicative identity is the constant 1
function, and the additive inverse of f is the function −f = (−1)f .
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Proposition 10. Let U ⊂ Rn and Ũ ⊂ Rm be open.

1. If F : U → Ũ and G : Ũ → Rp are C1, then G ◦ F : U → Rp is C1, and
its partial derivatives are given by

∂(Gi ◦ F )
∂xj

(x) =

m∑
j=1

∂Gi

∂yk
(F (x))

∂F k

∂xj
(x).

2. If F and G are smooth, then G ◦ F is smooth.

Proof. Since F and G are C1, they are differentiable, so G ◦ F is also differen-
tiable, and for each x ∈ U , the matrix of D(G ◦ F )(x) is given by

∂(Gi ◦ F )
∂xj

(x) = [D(G ◦ F )(x)]ij

= [DG(F (x)) ◦DF (x)]ij

=
m∑

k=1

[DG(F (x))]ik[DF (x)]
k
j

=

m∑
k=1

∂Gi

∂yk
(F (x))

∂F k

∂xj
(x).

This shows that the partial derivatives of G ◦F are sums of products of contin-
uous functions, which is continuous. Hence G ◦ F is C1. Thus the composition
of C1 functions is C1.

Suppose now that the composition of Ck functions is Ck. If F and G are
Ck+1, then let

Hi
l (y) =

∂Gi

∂yl
(y)

for all i, l, and y. Then our computation above shows that

∂Gi ◦ F
∂xj

(x) =

n∑
l=1

(Hi
l ◦ F (x))

∂F k

∂xj
(x)

for all i, j, and x. Since G is Ck+1, each Hi
l is Ck. Since F is Ck+1, and

hence is also Ck, we have that Hi
l ◦F is Ck and ∂F k/∂xj is also Ck. Therefore

the partials of Gi ◦ F are sums of products of Ck functions, and hence is Ck.
Therefore each Gi ◦ F is Ck+1, so G ◦ F is Ck+1 whenever G and F are Ck+1.
Hence, by induction, the composition of Ck functions is Ck for all k. From this,
it follows that the composition of smooth functions is smooth.

Corollary 2. Let U ⊂ Rn be open, and let f, g : U → R. If f and g are smooth,
and if g never vanishes on U , then f/g is smooth.

Proof. Let h : R− {0} → R be defined by h(x) = 1/x. Then for any x ̸= 0,

h′(x) = −1/x2
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which is continuous. Therefore h is C1, and

h′(x) =
(−1)11!

x1+1

for all x ∈ R− {0}. Now suppose that h is Ck and

dkh

dxk
(x) =

(−1)kk!

x1+k
= (−1)kk!h(p(x))

for all x ∈ R − {0}, where p : R → R is defined by p(x) = x1+k. Then since
p′(x) = (k + 1)xk, we have from the chain rule that

dk+1h

dxk+1
(x) =

(−1)k+1(k + 1)!

x1+k+1

for all x ∈ R−{0}. Hence, by induction, h is smooth. Since f/g = f · (h ◦ g) on
U , and since the multiplication and composition of smooth functions is smooth,
we conclude that f/g is smooth.

7 Extension to Non-Open Subsets

Definition 11. If A ⊂ Rn, then F : A→ Rm is smooth on A if for all x ∈ A,
there is an open neighborhood U ⊂ Rn of x and a smooth function F̃ : U → Rm

such that F̃ = F on U ∩A. We call such an F̃ a smooth extension of F on
an open neighborhood of x.

Remark 11. If U ⊂ Rn is open, then F : U → Rm is smooth on U as above iff
F : U → Rm is smooth in the previously defined sense.

Remark 12. Let A ⊂ Rm. If F : A→ Rn is smooth, then F is continuous.

Proposition 11. Let A ⊂ Rn, B ⊂ Rm, F : A → Rm, G : B → Rp, and
F (A) ⊂ B. If F and G are smooth, then G ◦ F : A→ Rp is smooth.

Proof. Let x ∈ A. Then there is an open neighborhood V of f(x) and a smooth
function G̃ : V → Rp such that G̃ = G on V ∩ B, and there is an open
neighborhood U of x and a smooth function F̃ : U → Rm such that F̃ = F on
U∩A. Then U∩F̃−1(V ) is an open neighborhood of x and G̃◦F̃ : U∩F̃−1(V ) →
Rp is a smooth function such that G̃ ◦ F̃ = G ◦ F on U ∩ F̃−1(V ) ∩ A. Hence
G ◦ F : A→ Rp is smooth.

Definition 12. Given A ⊂ Rn and B ⊂ Rm, a diffeomorphism from A to
B is a smooth bijection F : A→ B with smooth inverse.

Remark 13. Every diffeomorphism between subsets of Euclidean space is a
homeomorphism.
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8 Directional Derivatives

Definition 13. Let f : U → R be a smooth real-valued function on an open
subset U of Rn. For each v ∈ Rn, each a ∈ U , the directional derivative of
f in the direction of v at a is the number

Dvf(a) =
d

dt

∣∣∣∣
t=0

f(a+ tv).

Remark 14. More precisely, given a ∈ U and v ∈ Rn, since U is open, there is
an ϵ > 0 such that a+ tv ∈ U for all t ∈ R such that |t| < ϵ. Let g : (−ϵ, ϵ) → U
be defined by

g(t) = a+ tv.

Since the map g is smooth, f ◦ g is smooth. Then

Dvf(a) = (f ◦ g)′(0) =
n∑

i=1

∂f

∂xi
(a)vi,

where the last equality follows from the chain rule.

9 The Inverse Function Theorem and the Im-
plicit Function Theorem

Definition 14. Let (X, d) be a metric space. A map G : X → X is a contrac-
tion if there is a constant λ ∈ (0, 1) such that d(G(x), G(y)) ≤ λd(x, y) for all
x, y ∈ X. We call such a λ a contraction constant for G.

Remark 15. Every contraction is continuous.

Definition 15. Let X be a set. A fixed point of a map G : X → X is a point
x ∈ X such that G(x) = x.

Lemma 1 (Contraction Lemma). Let (X, d) be a nonempty complete metric
space. Every contraction G : X → X has a unique fixed point.

Proof. Let x0 ∈ X. Let xi+1 = G(xi) for all i ≥ 0. Let λ be a contraction
constant for G. Then the sequence (xn) ⊂ X satisfies

d(xi, xi+1) = d(G(xi−1), G(xi)) ≤ λd(xi−1, xi)

for all i ≥ 1. By induction, we conclude that

d(xi, xi+1) ≤ λid(x0, x1)

18



for all i. Hence for any i < j, we have that

d(xi, xj) ≤ d(xi, xi+1) + d(xi+1, xi+2) + · · ·+ d(xj−1, xj)

≤ λi(1 + λ+ · · ·+ λj−i−1)d(x0, x1)

= λi
1− λj−i

1− λ
d(x0, x1)

≤ λi
d(x0, x1)

1− λ
.

Since 0 ≤ d(xi, xj) = d(xj , xi) for all i, j, and since 0 = d(xi, xi) for all i, we
then conclude that

0 ≤ d(xi, xj) ≤ λmin{i,j} d(x0, x1)

1− λ

for all i, j. Now since the last term converges to 0 as i, j → ∞, we conclude that
(xn) is a Cauchy sequence in X. Therefore, since X is complete, there is an
x ∈ X such that xn → x. Since contractions are continuous, we then have that
G(xn) → G(x). However, since G(xn) = xn−1 for all n ≥ 1, we then conclude
that xn → G(x) as well. In other words, G(x) = x, so x is a fixed point of G.

If x′ is another fixed point, then

d(x, x′) = d(G(x), G(x′)) ≤ λd(x, x′).

Since 0 < λ < 1, this implies that d(x, x′) = 0, so that x = x′. Therefore G has
exactly one fixed point.

Proposition 12 (Lipschitz Estimate for C1 Functions). Let U ⊂ Rn be open,
and let F : U → Rm be C1. Then F is Lipschitz continuous on every compact
convex subset K ⊂ U , with Lipschitz constant supx∈K |DF (x)|, where

|DF (x)| =
√∑

i,j

([DF (x)]ij)
2

and [DF (x)] is the standard matrix representation of DF (x).

Proof. Let a, b ∈ K. Then for all 0 ≤ t ≤ 1, a + t(b − a) ∈ K. From the
fundamental theorem of calculus and the chain rule,

F (b)− F (a) =

∫ 1

0

d

dt
F (a+ t(b− a)) dt

=

∫ 1

0

[DF (a+ t(b− a))](b− a) dt.

Therefore, by properties of the integral and properties of the given matrix norm,

|F (b)− F (a)| ≤
(
sup
x∈K

|DF (x)|
)
|b− a|.
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Lemma 2 (The Inverse Function Theorem, Special Case). Let U and V be open
neighborhoods of 0 in Rn. Let F : U → V be smooth and such that F (0) = 0
and DF (0) = In. Also, suppose that DF (x) is invertible for all x ∈ U . Then
there are connected open neighborhoods U0 ⊂ U and V0 ⊂ V of 0 such that
F : U0 → V0 is a diffeomorphism.

Proof. Step 1: Finding a neighborhood of 0 for which F is injective. Let H(x) =
x − F (x) for each x ∈ U . Then DH(0) = In − In = 0. Observe that the
matrix entries of [DH] = [In − DF ] are continuous functions on U . Hence

DH : U → L(Rn,Rn) ∼= Rn2

is continuous at 0 ∈ U . Therefore, there is a δ > 0
such that K := Bδ(0) ⊂ U and for all x ∈ K,

|DH(x)−DH(0)| = |DH(x)| ≤ 1/2.

From the Lipschitz estimate for C1 functions applied to the function H and the
compact set K,

|H(x)−H(x′)| ≤ 1

2
|x− x′|

for all x, x′ ∈ K. Taking x′ = 0 gives us

|H(x)| ≤ 1

2
|x| (9)

for all x ∈ K. Since

x− x′ = F (x)− F (x′) +H(x)−H(x′)

for all x, x′ ∈ U ⊃ K, we also have that

|x− x′| ≤ |F (x)− F (x′)|+ |H(x)−H(x′)| ≤ |F (x)− F (x′)|+ 1

2
|x− x′|

for all x, x′ ∈ K. This implies that

0 ≤ |x− x′| ≤ 2|F (x)− F (x′)| (10)

for all x, x′ ∈ K, so that F is injective on K.
Step 2: Finding a neighborhood of 0 for which F is bijective. Let y ∈

Bδ/2(0) ⊂ K. We will show that there is x ∈ Bδ(0) ⊂ K such that F (x) = y.
For all x ∈ K, let G(x) = y+H(x) = y+x−F (x). Then G(x) = x iff F (x) = y.
Now for all x ∈ K, equation (9) implies that

|G(x)| ≤ |y|+ |H(x)| < δ

2
+

1

2
|x| ≤ δ.

Then G : K → Bδ(0) ⊂ K, and

|G(x)−G(x′)| = |H(x)−H(x′)| ≤ 1

2
|x− x′|
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for all x, x′ ∈ K. Hence G : K → Bδ(0) ⊂ K is a contraction map, so by the
contraction mapping lemma, there is a unique x ∈ K such that G(x) = x ∈
Bδ(0). Therefore there is a unique x ∈ Bδ(0) such that F (x) = y.

Step 3: Finding U0, V0, and F−1 : V0 → U0. Let V0 = Bδ/2(0) ⊂ K ⊂ U
and let U0 = Bδ(0) ∩ F−1(V0) ⊂ K ⊂ U . Then U0 ⊂ U and V0 are open and
steps 1 and 2 show that F : U0 → V0 is bijective. Hence F−1 : V0 → U0 exists.
Given y ∈ V0, we have that F−1(y) ∈ U0 ⊂ U , so y = F (F−1(y)) ∈ F (U) ⊂ V .
Hence V0 ⊂ V as well. Since equation (10) applies to all x, x′ ∈ K ⊃ U0, for
any y, y′ ∈ V0, we have that

|F−1(y)− F−1(y′)| ≤ 2|y − y′|,

so that F−1 : V0 → U0 is continuous (even Lipschitz continuous). Therefore
F : U0 → V0 is a homeomorphism, so since V0 is connected, U0 is also connected.

Step 4: Showing F−1 : V0 → U0 is differentiable. Let y ∈ V0, and let
y′ ∈ V0 − {y}. Let x = F−1(y) ∈ U0 and let L = DF (x). Since F−1(V0) =
U0 ⊂ K ⊂ U , we have that L−1 exists by assumption and is linear since L is
linear. Let x′ = F−1(y′) ∈ U0. Since F−1 is injective, x ̸= x′. We also have
that y = F (x) and y′ = F (x′). Therefore, all of our observations imply that

|F−1(y′)− F−1(y)− L−1(y′ − y)|
|y′ − y|

=
|x′ − x|
|y′ − y|

|L−1(L(x′ − x)− F (x′) + F (x))|
|x′ − x|

.

Since equation (10) applies to all x, x′ ∈ K ⊃ U0, we have that

|x′ − x|
|y′ − y|

≤ 2.

Since L−1 is a linear map between finite dimensional vector spaces, there is a
constant C > 0 such that

|L−1(L(x′ − x)− F (x′) + F (x))| ≤ C|F (x′)− F (x)− L(x′ − x)|.

Therefore

0 ≤ |F−1(y′)− F−1(y)− L−1(y′ − y)|
|y′ − y|

≤ 2C
|F (x′)− F (x)− L(x′ − x)|

|x′ − x|
.

Now if y′ → y, since F−1 is continuous, x′ → x. Then since L = DF (x) and
since F is differentiable,

|F (x′)− F (x)− L(x′ − x)|
|x′ − x|

→ 0

as x′ → x. Hence

|F−1(y′)− F−1(y)− L−1(y′ − y)|
|y′ − y|

→ 0
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as y′ → y, so F−1 is differentiable at each y ∈ V0 and

D(F−1)(y) = DF (F−1(y))−1.

Step 5: Showing F−1 : V0 → U0 is C
1. Since F−1 is differentiable, the partial

derivatives of F−1 exist and are the entries of the matrix-valued function y 7→
[D(F−1)(y)] = [DF (F−1(y))]−1. This map can be realized as the composition
of the maps

y 7→ F−1(y) 7→ [DF (F−1(y))] 7→ [DF (F−1(y)]−1. (11)

We have that F−1 is continuous, x 7→ [DF (x)] is smooth as a map from U0

to Rn2 ∼= GL(n,R), and, because of Cramer’s rule, taking inverses of invert-

ible matrices is smooth when thought of as a map from GL(n,R) ∼= Rn2 →
GL(n,R) ∼= Rn2

. Therefore all the intermediate maps in the composition are
at least continuous, so the entries of the map y 7→ [D(F−1)(y)] are continuous
maps on V0. In other words, all the partial derivatives of F−1 exist and are
continuous, so F−1 is C1.

Step 6: Showing F−1 is smooth. Suppose that F−1 is Ck. Then each of
the maps in (11) is Ck, which implies that the entries of y 7→ [D(F−1)(y)] are
Ck. In other words, all the partial derivatives of F−1 are Ck, so F−1 is Ck+1.
Therefore, by induction, F−1 is smooth.

Theorem 1 (The Inverse Function Theorem, General Case). Let U and V be
open subsets of Rn, and let F : U → V be smooth. Let a ∈ U , and suppose that
DF (a) : Rn → Rn is invertible. Then there exist connected open neighborhoods
U0 ⊂ U of a and V0 ⊂ V of F (a) such that F : U0 → V0 is a diffeomorphism.

Proof. First we reduce to the special case. Let a ∈ U . Then since V is open,
there is an r > 0 such that F (a) ∈ Br(F (a)) ⊂ V , and there is an s > 0 such that
a ∈ Bs(a) ∩ F−1(Br(F (a))) ⊂ U . Since Bs(a) ∩ F−1(Br(F (a))) is open, there
is an s′ > 0 such that a ∈ Bs′(a) ⊂ Bs(a)∩F−1(Br(F (a))). Observe that when
x ∈ U1 := Bs′(0), a+ x ∈ Bs′(a) and F1(x) := F (a+ x)− F (a) ∈ Br(0) := V1.
Then F1 : U1 → V1 is a smooth map between connected open neighborhoods
U1 of 0 and V1 of F1(0) = 0. Also, we have that D(F1)(0) = DF (a), so
D(F1)(0) is invertible. Now let F2(x) = D(F1)(0)

−1(F1(x)) for all x ∈ U1.
Then since F2 : U1 → Rn is the composition of a smooth map and a linear
map, we have that F2 : U1 → Rn is smooth. We also have that F2(0) = 0
since F1(0) = 0 and D(F1)(0)

−1 is linear. Furthermore, by the chain rule and
linearity of D(F1)(0)

−1, we have that

D(F2)(0) = D(D(F1)(0)
−1)(F1(0)) ◦D(F1)(0) = D(F1)(0)

−1 ◦D(F1)(0) = In.

Since F2 is smooth, there is an s′ > s′′ > 0 such that F2(Bs′′(0)) ⊂ Br(0) = V1.
Let U2 = Bs′′(0), so that U2 ⊂ U1. The map x 7→ det[D(F2)(x)] is smooth on
U2 since it is a polynomial of the partial derivatives of F2 which are smooth
functions. Therefore, there is an 0 < s′′′ < s′′ such that when |x| < s′′′, we have
that

1− | det[D(F2)(x)]| ≤ | det[D(F2)(0)]− det[D(F2)(x)]| < 1/2.
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Hence when x ∈ U3 := Bs′′′(0) ⊂ U2, we have that

|det[D(F2)(x)]| > 1/2,

and thus D(F2)(x) is invertible for all x ∈ U3. Hence the map F2 : U3 → V1
is a smooth map between connected open neighborhoods U3 and V1 of 0 which
satisfies DF2(0) = In, F2(0) = 0, and D(F2)(x) is invertible for all x ∈ U3.

We now apply the special case to F2 : U3 → V1 to conclude that there
are connected open neighborhoods U4 ⊂ U3 and V2 ⊂ V1 of 0 such that F2 :
U4 → V2 is a diffeomorphism. Then since F1 = D(F1)(0) ◦ F2 : U4 → V3 :=
D(F1)(0)(V2), which is the composition of smooth maps between connected
open neighborhoods of 0, we have that F1 : U4 → V3 is smooth. Furthermore,
we also have that F−1

1 = F−1
2 ◦D(F1)(0)

−1 : V3 → U4 exists and is smooth, so
F1 : U4 → V3 is a diffeomorphism between connected open neighborhoods of 0.
Now if x ∈ U0 := a+ U4 ⊂ U , then x− a ∈ U4 and

F (x) = F1(x− a) + F (a) ∈ V0 := F (a) + V3.

Therefore F : U0 → V0 is smooth. Given y ∈ F (a) + V3, y = F (a) + z for some
z ∈ V3 = F1(U4), so y = F (a) + F1(z

′) for some z′ ∈ U4. Then a+ z′ ∈ U0 and

F (a+ z′) = F1(z
′) + F (a) = y.

Hence F : U0 → V0 is bijective. Thus, given y ∈ V0, F
−1(y) ∈ U0 ⊂ U , and

thus y ∈ F (U) ⊂ V . Thus U0 ⊂ U is a connected open neighborhood of a and
V0 ⊂ V is a connected open neighborhood of F (a). Finally, we also have that

F−1(y) = F−1
1 (y − F (a)) + a

for all y ∈ V0. Hence F−1 : U0 → V0 is smooth, so F : U0 → V0 is a diffeo-
morphism between a connected open neighborhood U0 ⊂ U of a and V0 ⊂ V of
F (a). This completes the proof.

Theorem 2 (The Implicit Function Theorem). Let U ⊂ Rn×Rk be open and let
ϕ : U → Rk be smooth. Let (x, y) = (x1, . . . , xn, y1, . . . , yk) denote the standard
coordinates on U . Let (a, b) ∈ U and let c = ϕ(a, b). Suppose that the k × k
matrix [

∂ϕi

∂yj
(a, b)

]
is nonsingular. Then there are open neighborhoods V0 ⊂ Rn of a and W0 ⊂ Rk

of b and a smooth function F : V0 → W0 such that for all x ∈ V0 and y ∈ W0,
ϕ(x, y) = c iff y = F (x).

Proof. First we define a smooth function for which to apply the inverse function
to. Let ψ : U → Rn × Rk be defined by

ψ(x, y) = (x, ϕ(x, y)).
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This is smooth, and

[Dψ(a, b)] =

[
In 0

∂ϕi

∂xj (a, b)
∂ϕi

∂yj (a, b)

]

is nonsingular by our assumptions. Therefore, by the inverse function theorem,
there are connected open neighborhoods U0 ⊂ U of (a, b) and Y0 ⊂ Rn × Rk of
ψ(a, b) = (a, c) such that ψ : U0 → Y0 is a diffeomorphism.

Next, we define V0 and W0. Since U0 is an open subset of Rn×Rk, there are
open sets V ⊂ Rn andW0 ⊂ Rk such that (a, b) ∈ V ×W0 ⊂ U0. Then ψ(a, b) =
(a, c) ∈ ψ(V ×W0) ⊂ Y0 and ψ : V ×W0 → ψ(V ×W0) is a diffeomorphism.
Let V0 = {x ∈ V : (x, c) ∈ ψ(V ×W0)}, so that a ∈ V0 ⊂ V is open and b ∈W0

is open.
Now, we define F : V0 →W0. Since ψ

−1 : ψ(V ×W0) → V ×W0, is smooth,
there are smooth functions A : ψ(V ×W0) → V and B : ψ(V ×W0) →W0 such
that ψ−1(x, y) = (A(x, y), B(x, y)) for all (x, y) ∈ ψ(V ×W0). Let F : V0 →W0

be defined by F (x) = B(x, c) for all x ∈ V0.
Now before we show that F has all of the desired properties, we make one

observation. Let (x, y) ∈ ψ(V ×W0). Then

(x, y) = ψ(ψ−1(x, y))

= ψ(A(x, y), B(x, y))

= (A(x, y), ϕ(A(x, y), B(x, y)).

Comparing the first coordinates shows us that

A(x, y) = x

for all (x, y) ∈ ψ(V ×W0).
Now we show that F has all of the desired properties. First, since B is

smooth, F is smooth. Next, if x ∈ V0 and y ∈W0 is such that ϕ(x, y) = c, then
ψ(x, y) = (x, c) ∈ ψ(V ×W0), so that A(x, c) = x. Therefore,

(x, y) = ψ−1(x, c) = (A(x, c), B(x, c)) = (x, F (x)).

Hence y = F (x).
Conversely, if x ∈ V0 and y ∈ W0 is such that y = F (x), then (x, c) ∈

ψ(V ×W0), so that A(x, c) = x. Therefore,

(x, c) = ψ(ψ−1(x, c))

= (A(x, c), ϕ(A(x, c), B(x, c))

= (x, ϕ(x, F (x)))

= (x, ϕ(x, y)).

Comparing the second coordinates then implies that ϕ(x, y) = c. This completes
the proof.
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