Multivariable Calculus Notes

Contents

1 Total Derivatives 1
2 Partial Derivatives 7
3 Continuously Differentiable Functions 9
4 Higher Order Derivatives 11
5 Diffeomorphisms 13
6 Smooth Real-Valued Functions 14
7 Extension to Non-Open Subsets 17
8 Directional Derivatives 18
9 The Inverse Function Theorem and the Implicit Function The-orem18

1 Total Derivatives

Definition 1. Let V and W be finite dimensional normed vector spaces. Let U be an open subset of V. We say that a function $F: U \rightarrow W$ is differentiable at $a \in U$ if there is a linear map $L: V \rightarrow W$ such that

$$
\begin{equation*}
\lim _{v \rightarrow 0} \frac{|F(a+v)-F(a)-L v|}{|v|}=0 . \tag{1}
\end{equation*}
$$

Remark 1. Equivalently, $F: U \rightarrow W$ is differentiable at $a \in U$ iff there is a linear map $L: V \rightarrow W$ such that

$$
\lim _{v \rightarrow a} \frac{|F(v)-F(a)-L(v-a)|}{|v-a|}=0 .
$$

Proposition 1. If $F: U \rightarrow W$ is differentiable at $a \in U$, then the linear map L satisfying equation (1) is unique.

Proof. Let L and L^{\prime} be two such linear maps. Then $L 0=0=L^{\prime} 0$ by linearity. Now let $v \in V-\{0\}$, and let $\epsilon>0$. Then there is $\delta>0$ such that when $0<|u|<\delta$,

$$
\frac{|F(a+u)-F(a)-L u|}{|u|}<\epsilon
$$

and

$$
\frac{\left|F(a+u)-F(a)-L^{\prime} u\right|}{|u|}<\epsilon .
$$

Let $t=\frac{\delta}{2|v|}$ and let $u=t v$. Then

$$
0<|u|=t|v|=\frac{\delta}{2}<\delta
$$

Therefore

$$
\begin{aligned}
\left|L v-L^{\prime} v\right| & \leq \frac{|u|}{t}\left(\frac{|L u-F(a+u)+F(a)|}{|u|}+\frac{\left|F(a+u)-F(a)-L^{\prime} u\right|}{|u|}\right) \\
& <2 \epsilon|v|
\end{aligned}
$$

for all $\epsilon>0$. Hence $L v=L^{\prime} v$ for all $v \in V$, so L is unique.
Definition 2. If F is differentiable at a, the linear map L satisfying equation (1) is denoted by $D F(a)$ and is called the total derivative of F at a.

Remark 2. Equation (1) can be rewritten as

$$
\begin{equation*}
F(a+v)=F(a)+D F(a) v+R_{F}(v) \tag{2}
\end{equation*}
$$

where $R_{F}(v)=F(a+v)-F(a)-D F(a) v$ satisfies $|R(v)| /|v| \rightarrow 0$ as $v \rightarrow 0$.
Proposition 2. Let V, W, and X be finite dimensional vector spaces. Let $U \subset V$ be open. Let $a \in U$. Let $F, G: U \rightarrow W$, and let $f, g: U \rightarrow \mathbb{R}$. Then

1. If F is differentiable at a, then F is continuous at a.
2. If F is constant, then F is differentiable at a and $D F(a)=0$.
3. If F and G are differentiable at a, and if $c \in \mathbb{R}$, then $c F+G$ is differentiable at a and

$$
D(c F+G)(a)=c D F(a)+D G(a)
$$

4. If f and g are differentiable at a, then $f g$ is differentiable at a, and

$$
D(f g)(a)=f(a) D g(a)+g(a) D f(a)
$$

5. If f and g are differentiable at a, and if $g(a) \neq 0$, then f / g is differentiable at a and

$$
D(f / g)(a)=\frac{g(a) D f(a)-f(a) D g(a)}{g(a)^{2}}
$$

6. If $T: V \rightarrow W$ is linear, then T is differentiable at every $v \in V$, with $D T(v)=T$.
7. If $B: V \times W \rightarrow X$ is bilinear, then B is differentiable at every $(v, w) \in$ $V \times W$, and

$$
D B(v, w)(x, y)=B(v, y)+B(x, w)
$$

Proof. 1. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a+v \in U$ for all $v \in N$. Then for any $v \in N-\{0\}$,

$$
\begin{aligned}
|F(a+v)-F(a)| & =\frac{|F(a+v)-F(a)-D F(a) v|}{|v|}|v|+|D F(a) v| \\
& \leq|v|(|R(v)| /|v|+|D F(a)|)
\end{aligned}
$$

Since $|R(v)| /|v|+|D F(a)| \rightarrow|D F(a)|$ and $|v| \rightarrow 0$ as $v \rightarrow 0$, we conclude that F is continuous at a.
2. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a+v \in U$ for all $v \in N$. Then for any $v \in N-\{0\}$,

$$
\frac{|F(a+v)-F(a)-0 v|}{|v|}=0 .
$$

Therefore $0: V \rightarrow W$ satisfies the differentiability condition, so F is differentiable at a. By uniqueness, $D F(a)=0$.
3. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a+v \in U$ for all $v \in N$. Then the conclusion follows from the fact that

$$
\frac{|N(v)|}{|v|} \leq c \frac{\left|R_{F}(v)\right|}{|v|}+\frac{\left|R_{G}(v)\right|}{|v|}
$$

for all $v \in N-\{0\}$, where

$$
\begin{gathered}
N(v)=(c F+G)(a+v)-(c F+G)(a)-c D F(a) v-D G(a) v \\
R_{F}(v)=F(a+v)-F(a)-D F(a) v, \text { and } R_{G}(v)=G(a+v)-G(a)-D G(a) v .
\end{gathered}
$$

4. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a+v \in U$ for all $v \in N$. Let $v \in N-\{0\}$. We have that

$$
f(a+v)=f(a)+D f(a) v+R_{f}(v)
$$

where

$$
R_{f}(v)=f(a+v)-f(a)-D f(a) v
$$

Similarly,

$$
g(a+v)=g(a)+D g(a) v+R_{g}(v)
$$

where

$$
R_{g}(v)=g(a+v)-g(a)-D g(a) v .
$$

Hence

$$
(f g)(a+v)=(f g)(a)+f(a) D g(a) v+g(a) D f(a) v+R(v)
$$

where

$$
\begin{aligned}
R(v)= & f(a) R_{g}(v)+D f(a) v D g(a) v+D f(a) v R_{g}(v)+ \\
& R_{f}(v) g(a)+R_{f}(v) D g(a) v+R_{f}(v) R_{g}(v)
\end{aligned}
$$

We have that $\left|R_{g}(v)\right| /|v| \rightarrow 0$ and $\left|R_{f}(v)\right| /|v| \rightarrow 0$ as $v \rightarrow 0$. We also have that $\left|R_{g}(v)\right| \rightarrow 0$ and

$$
|D f(a) v D g(a) v| /|v| \leq|D f(a)||D g(a)||v| \rightarrow 0
$$

as $v \rightarrow 0$. From this, we see that $|R(v)| /|v| \rightarrow 0$ as $v \rightarrow 0$. Since we also have that

$$
R(v)=(f g)(a+v)-(f g)(a)-f(a) D g(a) v-g(a) D f(a) v,
$$

this proves the result.
5. Since $a \in U \subset V$ is open, since $g(a) \neq 0$, and since g is continuous at a, there is an open neighborhood $N \subset V$ of 0 such that $a+v \in U$ for all $v \in N$ and $g(a+v) \neq 0$ for all $v \in N$. Then $a+N=\{a+v: v \in N\} \subset U$ is an open neighborhood of a. Let $h: a+N \rightarrow \mathbb{R}$ be defined by $h(u)=1 / g(u)$ for all $u \in a+N$. We will show that h is differentiable at a and

$$
D h(a)=-\frac{1}{g(a)^{2}} D g(a) .
$$

Indeed, we have that for any $v \in N-\{0\}$,

$$
\begin{aligned}
h(a+v)-h(a) & =1 / g(a+v)-1 / g(a) \\
& =\frac{g(a)-g(a+v)}{g(a) g(a+v)} \\
& =-\frac{1}{g(a) g(a+v)}\left(D g(a) v+R_{g}(v)\right)
\end{aligned}
$$

Then

$$
h(a+v)-h(a)+\frac{1}{g(a)^{2}} D g(a) v=R(v)
$$

where

$$
R(v)=\left(\frac{1}{g(a)^{2}}-\frac{1}{g(a) g(a+v)}\right) D g(a) v-\frac{1}{g(a) g(a+v)} R_{g}(v) .
$$

Since

$$
|D g(a) v| /|v| \leq|D g(a)|
$$

and since $\left|R_{g}(v)\right| /|v| \rightarrow 0$ and

$$
\left|\frac{1}{g(a)^{2}}-\frac{1}{g(a) g(a+v)}\right| \rightarrow 0
$$

as $v \rightarrow 0$, we conclude that

$$
\frac{\left|h(a+v)-h(a)+\frac{1}{g(a)^{2}} D g(a) v\right|}{|v|}=\frac{|R(v)|}{|v|} \rightarrow 0
$$

as $v \rightarrow 0$. Hence h is differentiable at a and

$$
D h(a)=-\frac{1}{g(a)^{2}} D g(a)
$$

Now since $f / g=f h$ on $a+N$, we have that f / g is differentiable at a and

$$
D(f / g)(a)=\frac{1}{g(a)} D f(a)-\frac{f(a)}{g(a)^{2}} D g(a)=\frac{g(a) D f(a)-f(a) D g(a)}{g(a)^{2}} .
$$

6. For any $v \in V$, any $v^{\prime} \in V-\{0\}$,

$$
\frac{\left|T\left(v-v^{\prime}\right)-T v-T v^{\prime}\right|}{\left|v^{\prime}\right|}=0
$$

so the result follows immediately.
7. For any $v \in V, w \in W,(x, y) \in V \times W-\{(0,0)\}$, we have that

$$
\frac{|B(v+x, w+y)-B(v, w)-B(v, y)-B(x, w)|}{|(x, y)|}=\frac{|B(x, y)|}{|(x, y)|}
$$

We will show that $|B(x, y)| /|(x, y)| \rightarrow 0$ as $(x, y) \rightarrow 0$, which will prove the result.
First, suppose that $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis for V and $\left\{f_{1}, \ldots, f_{m}\right\}$ is a basis for W. Suppose that V and W are endowed with the ℓ^{∞}-norms with respect to these bases, ie

$$
|v|=\left|\sum_{i} \alpha_{i} e_{i}\right|=\max _{i}\left|\alpha_{i}\right|
$$

for all $v=\sum_{i} \alpha_{i} e_{i}$ in V and

$$
|w|=\left|\sum_{j} \beta_{j} f_{j}\right|=\max _{j}\left|\beta_{j}\right|
$$

for all $w=\sum_{j} \beta_{j} f_{j} \in W$. Also suppose that we have that ℓ^{∞} product norm on $V \times W$, ie $|(v, w)|=\max \{|v|,|w|\}$ for all $v \in V, w \in W$. Let $x=$
$\sum_{i} x_{i} e_{i}$ and $y=\sum_{j} y_{j} f_{j}$ be arbitrary such that $(x, y) \in V \times W-\{(0,0)\}$. Then we have that

$$
B(x, y)=\sum_{i, j} x_{i} y_{j} B\left(e_{i}, f_{j}\right)
$$

so that

$$
\begin{aligned}
|B(x, y)| /|(x, y)| & \leq n \max _{i, j}\left|B\left(e_{i}, f_{j}\right)\right| \frac{|x||y|}{\max \{|x|,|y|\}} \\
& \leq n m \max _{i, j}\left|B\left(e_{i}, f_{j}\right)\right| \min \{|x|,|y|\}
\end{aligned}
$$

and the last quantity converges to 0 as (x, y) converges to $(0,0)$. This proves the result when V, W, and $V \times W$ all have the norms that we specified. Now if V, W, and $V \times W$ all have arbitrary norms on them, since all norms on a finite dimensional vector space are equivalent, the general result follows from what we just showed. In other words,

$$
|B(x, y)| /|(x, y)| \rightarrow 0
$$

as $(x, y) \rightarrow(0,0)$ independent of choice of norms for $V, W, V \times W$, and X. This completes the proof.

Proposition 3 (Chain Rule for Total Derivatives). Let V, W, and X be finite dimensional vector spaces. Let $U \subset V$ and $\tilde{U} \subset W$ be open subsets. Let F : $U \rightarrow \tilde{U}$ and $G: \tilde{U} \rightarrow X$. If F is differentiable at $a \in U$ and G is differentiable at $F(a) \in \tilde{U}$, then $G \circ F$ is differentiable at a with

$$
D(G \circ F)(a)=D G(F(a)) \circ D F(a) .
$$

Proof. Since $F(a) \in \tilde{U}$ is open, there is an open neighborhood $\tilde{N} \subset W$ of 0 such that $F(a)+w \in \tilde{U}$ for all $w \in \tilde{N}$. Hence $F(a)+\tilde{N}=\{F(a)+w: w \in N\} \subset \tilde{U}$ is an open neighborhood of $F(a)$. Since F is continuous at a and $a \in U$ is open, there is an open neighborhood $N \subset V$ of 0 such that $a+v \in U$ and $F(a+v) \in F(a)+\tilde{N}$ for all $v \in N$. Then for any $v \in N-\{0\}$, we have that

$$
w(v)=F(a+v)-F(a)=D F(a) v+R_{F}(v) \in \tilde{N} .
$$

Therefore, for $v \in N-\{0\}$ such that $w(v) \neq 0$,

$$
\begin{aligned}
G(F(a+v))-G(F(a)) & =G(F(a)+w(v))-G(F(a)) \\
& =D G(F(a)) w(v)+R_{G}(w(v)) \\
& =D G(F(a)) D F(a) v+D G(F(a)) R_{F}(v)+R_{G}(w(v)) .
\end{aligned}
$$

Hence

$$
G(F(a+v))-G(F(a))-D G(F(a)) D F(a) v=R(v),
$$

where

$$
R(v)=D G(F(a)) R_{F}(v)+R_{G}(w(v)) .
$$

We have that $\left|R_{F}(v)\right| /|v| \rightarrow 0$ as $v \rightarrow 0$. We also have that

$$
\begin{aligned}
\frac{\left|R_{G}(w(v))\right|}{|v|} & =\frac{\left|R_{G}(w(v))\right|}{|v|\left(|D F(a)|+\left|R_{F}(v)\right| /|v|\right)}\left(|D F(a)|+\frac{\left|R_{F}(v)\right|}{|v|}\right) \\
& \leq \frac{\left|R_{G}(w(v))\right|}{\left|D F(a) v+R_{F}(v)\right|}\left(|D F(a)|+\frac{\left|R_{F}(v)\right|}{|v|}\right) \\
& =\frac{\left|R_{G}(w(v))\right|}{|w(v)|}\left(|D F(a)|+\frac{\left|R_{F}(v)\right|}{|v|}\right) .
\end{aligned}
$$

Now since $w(v) \rightarrow 0$ as $v \rightarrow 0$, and since $\left|R_{G}(w)\right| /|w| \rightarrow 0$ as $w \rightarrow 0$, the inequality above shows that

$$
\frac{|G(F(a+v))-G(F(a))-D G(F(a)) D F(a) v|}{|v|}=\frac{|R(v)|}{|v|} \rightarrow 0
$$

as $v \rightarrow 0$. This completes the proof.

2 Partial Derivatives

Definition 3. Let $U \subset \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}$. Let e_{1}, \ldots, e_{n} be the standard basis vectors of \mathbb{R}^{n}. For any $a \in U$ and any $j \in\{1, \ldots, n\}$, the j th partial derivative of f at a is

$$
\frac{\partial f}{\partial x^{j}}(a)=\lim _{h \rightarrow 0} \frac{f\left(a+h e_{j}\right)-f(a)}{h}
$$

if the limit exists.
Remark 3. We can use any symbol in place of x in the notation above.
Definition 4. Let $U \subset \mathbb{R}^{n}$ be open, and let $F: U \rightarrow \mathbb{R}^{m}$. The partial derivatives of F are the partial derivatives of the component functions F^{i} : $U \rightarrow \mathbb{R}$ where $F(x)=\left(F^{1}(x), \ldots, F^{m}(x)\right)$ for all $x \in U$. The matrix $\left(\partial F^{i} / \partial x^{j}\right)$ of partial derivatives is called the Jacobian matrix of F, and its determinant is the Jacobian determinant of F.

Proposition 4. Let $U \subset \mathbb{R}^{n}$ be open, and let $F: U \rightarrow \mathbb{R}^{m}$. If F is differentiable, then each of its partial derivatives exist at all points of U, and for each $a \in U$, the matrix representing $D F(a)$ with respect to the standard bases of \mathbb{R}^{n} and \mathbb{R}^{m} is the Jacobian matrix $\left(\partial F^{i} / \partial x^{j}(a)\right)$.

Proof. Let $a \in U$ and let $j \in\{1, \ldots, n\}$. Since U is open, there is an $\epsilon>0$ such that when $|t|<\epsilon, a+t e_{j} \in U$. Then for all $0<|t|<\epsilon$,

$$
F\left(a+t e_{j}\right)-F(a)=t D F(a) e_{j}+R_{F}\left(t e_{j}\right)
$$

Then for each i,

$$
\begin{equation*}
\frac{F^{i}\left(a+t e_{j}\right)-F^{i}(a)}{t}=(D F(a))_{j}^{i}+\frac{R_{F}\left(t e_{j}\right)^{i}}{t} \tag{3}
\end{equation*}
$$

Observe that for any norm $|\cdot|$ on \mathbb{R}^{m}, there is a constant $C>0$ such that for all $x \in \mathbb{R}^{m}$, all $i \in\{1, \ldots, m\},\left|x_{i}\right| \leq C|x|$. Indeed, this holds for $C=1$ with the ℓ^{∞} norm on \mathbb{R}^{m}, and since all norms are equivalent on \mathbb{R}^{m}, the general result follows. In particular, there is a constant $C>0$ such that

$$
\left|R_{F}\left(t e_{j}\right)^{i}\right| /|t| \leq C\left|R_{F}\left(t e_{j}\right)\right| /\left|t e_{j}\right|
$$

for all $0<|t|<\epsilon$.
Then since

$$
\frac{\left|R_{F}\left(t e_{j}\right)\right|}{\left|t e_{j}\right|} \rightarrow 0
$$

as $t \rightarrow 0$, taking the limit as $t \rightarrow 0$ in equation (3) implies that

$$
\frac{\partial F^{i}}{\partial x^{j}}(a)=(D F(a))_{j}^{i}
$$

for all i, j, and a as desired.
Proposition 5. Let $U \subset \mathbb{R}^{n}$ be open, and let $F: U \rightarrow \mathbb{R}^{m}$. Then F is differentiable iff each component function $F^{i}: U \rightarrow \mathbb{R}$ is differentiable, where the F^{i} satisfy $F(x)=\left(F^{1}(x), \ldots, F^{n}(x)\right)$ for all $x \in U$.
Proof. If F is differentiable, then for each $a \in U$, the linear map $D F(a): \mathbb{R}^{n} \rightarrow$ \mathbb{R}^{m} exists, and its standard matrix is given by

$$
(D F(a))_{j}^{i}=\frac{\partial F^{i}}{\partial x^{j}}(a) .
$$

Then since $a \in U$ is open, there is an $\epsilon>0$ such that $a+v \in U$ for all $|v|<\epsilon$. Then for each i and each $0<|v|<\epsilon$, we have that

$$
F^{i}(a+v)-F^{i}(a)=\sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a) v^{j}+R_{F}(v)^{i}
$$

Then the linear map $v \mapsto \sum_{j} \partial F^{i} / \partial x^{j}(a) v^{j}$ from \mathbb{R}^{n} to \mathbb{R} satisfies

$$
\begin{equation*}
F^{i}(a+v)-F^{i}(a)-\sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a) v^{j}=R_{F}(v)^{i} \tag{4}
\end{equation*}
$$

for all $0<|v|<\epsilon$. From equivalence of norms on \mathbb{R}^{m}, there is a constant $C>0$ such that

$$
\left|R_{F}(v)^{i}\right| /|v| \leq C\left|R_{F}(v)\right| /|v| \rightarrow 0
$$

as $v \rightarrow 0$. Therefore equation (4) implies that each F^{i} is differentiable at each $a \in U$.

Conversely, if each F^{i} is differentiable, then for each $a \in U$, the linear map $D F^{i}(a): \mathbb{R}^{n} \rightarrow \mathbb{R}$ exists and its standard matrix is given by

$$
\left(D F^{i}(a)\right)_{j}=\frac{\partial F^{i}}{\partial x^{j}}(a) .
$$

Then for $a \in U$ and for v sufficiently small where $a+v \in U$,

$$
F^{i}(a+v)-F^{i}(a)-\sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a) v^{j}=R_{F^{i}}(v)
$$

for each i, where $\left|R_{F^{i}}(v)\right| /|v| \rightarrow 0$ as $v \rightarrow 0$. For each v sufficiently small, let $R(v)$ be the vector in \mathbb{R}^{m} given by

$$
R(v)^{i}=R_{F^{i}}(v) .
$$

Also, for each $a \in U$, let $L(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear map given by

$$
(L(a) v)^{i}=\sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a) v^{j}
$$

for all i. Then we have that for all $a \in U$, for all v sufficiently small,

$$
F(a+v)-F(a)-L(a) v=R(v)
$$

Observe that $|R(v)| /|v| \rightarrow 0$ as $v \rightarrow 0$ when \mathbb{R}^{m} is given the ℓ^{1} norm. Since all norms on \mathbb{R}^{m} are equivalent, we then conclude that $|R(v)| /|v| \rightarrow 0$ independent of choice of norms on \mathbb{R}^{m} and \mathbb{R}^{n}. Hence F is differentiable at all $a \in U$.

Remark 4. The proof of the previous proposition also shows that

$$
(D F(a))_{j}^{i}=\left(D F^{i}(a)\right)_{j},
$$

that is, the i-th row of the standard matrix of $D F(a)$ corresponds to the standard matrix of $D F^{i}(a)$, provided that either F is differentiable at a or all F^{i} are differentiable at a.

3 Continuously Differentiable Functions

Definition 5. Let $U \subset \mathbb{R}^{n}$ be open. If $F: U \rightarrow \mathbb{R}^{m}$ is a function where each of its partial derivatives exist at all points of U, and each of the functions $\partial F^{i} / \partial x^{j}: U \rightarrow \mathbb{R}$ so defined are continuous, then F is said to be of class C^{1} or continuously differentiable.

Remark 5. It follows immediately from the definitions that a function $F: U \rightarrow$ \mathbb{R}^{m} defined on an open subset U of \mathbb{R}^{n} is C^{1} iff each $F^{i}: U \rightarrow \mathbb{R}$ is C^{1}.

Proposition 6. Let $U \subset \mathbb{R}^{n}$ be open. If $F: U \rightarrow \mathbb{R}^{m}$ is C^{1}, then F is differentiable at each point of U.

Proof. First suppose that $m=1$ and $n=2$. Let $a=\left(a^{1}, a^{2}\right) \in U$. Since U is open, there is an $\epsilon>0$ such that when $v \in B(0, \epsilon)-\{0\}, a+v \in U$. Given $v=\left(v_{1}, v_{2}\right)$ such that $0<|v|<\epsilon$, we have that

$$
F(a+v)-F(a)=\left[F\left(a^{1}+v^{1}, a^{2}+v^{2}\right)-F\left(a^{1}, a^{2}+v^{2}\right)\right]+\left[F\left(a^{1}, a^{2}+v^{2}\right)-F\left(a^{1}, a^{2}\right)\right]
$$

Since F is C^{1}, we can apply the mean value theorem twice to conclude that there is $w^{1}(v)$ between a^{1} and $a^{1}+v^{1}$ and $w^{2}(v)$ between a^{2} and $a^{2}+v^{2}$ such that

$$
F(a+v)-F(a)=\frac{\partial F}{\partial x^{1}}\left(w^{1}(v), a^{2}+v^{2}\right) v^{1}+\frac{\partial F}{\partial x^{2}}\left(a^{1}, w^{2}(v)\right) v^{2}
$$

This defines functions $w^{1}, w^{2}: B(0, \epsilon)-\{0\} \rightarrow \mathbb{R}$ such that $w^{1}(v) \rightarrow a^{1}$ and $w^{2}(v) \rightarrow a^{2}$ as $v \rightarrow 0$. Now let

$$
\begin{aligned}
R(v)= & \left(\frac{\partial F}{\partial x^{1}}\left(w^{1}(v), a^{2}+v^{2}\right)-\frac{\partial F}{\partial x^{1}}\left(a^{1}, a^{2}\right)\right) v^{1}+ \\
& \left(\frac{\partial F}{\partial x^{2}}\left(a^{1}, w^{2}(v)\right)-\frac{\partial F}{\partial x^{2}}\left(a^{1}, a^{2}\right)\right) v^{2}
\end{aligned}
$$

so that

$$
F(a+v)-F(a)-\frac{\partial F}{\partial x^{1}}(a) v^{1}-\frac{\partial F}{\partial x^{2}}(a) v^{2}=R(v)
$$

From the equivalence of norms on \mathbb{R}^{n}, we have that there is a $C>0$ such that

$$
\begin{aligned}
\frac{|R(v)|}{|v|} \leq & C\left|\frac{\partial F}{\partial x^{1}}\left(w^{1}(v), a^{2}+v^{2}\right)-\frac{\partial F}{\partial x^{1}}\left(a^{1}, a^{2}\right)\right|+ \\
& C\left|\frac{\partial F}{\partial x^{2}}\left(a^{1}, w^{2}(v)\right)-\frac{\partial F}{\partial x^{2}}\left(a^{1}, a^{2}\right)\right|
\end{aligned}
$$

and, by continuity of the partial derivatives, both terms on the right converge to 0 as $v \rightarrow 0$. Hence $|R(v)| /|v| \rightarrow 0$ as $v \rightarrow 0$, so this shows that F is differentiable. Therefore the result holds for $m=1$ and $n=2$.

The case for $m=1$ and general n is a straightforward generalization of the argument we just gave, just with more notation: write $F(a+v)-F(a)$ as a telescoping sum and apply the mean value theorem to each of the relevant pieces. The case for arbitrary m and n proceeds as follows: If F is C^{1}, then each of the component functions $F^{i}: U \rightarrow \mathbb{R}$ are C^{1}, so we can apply our $m=1$ case to each component function to conclude that each $F^{i}: U \rightarrow \mathbb{R}$ is differentiable. But then that implies that $F: U \rightarrow \mathbb{R}^{m}$ is differentiable. This completes the proof.

Remark 6. If U is an open subset of \mathbb{R}^{n} and $F: U \rightarrow \mathbb{R}^{m}$ is C^{1}, then since the matrix representing $D F$ has entries given by the partial derivatives of F, we have that $D F: U \rightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right) \cong \mathbb{R}^{n m}$ is continuous.

4 Higher Order Derivatives

Definition 6. Let $U \subset \mathbb{R}^{n}$ be open and $F: U \rightarrow \mathbb{R}^{m}$. If F is of class C^{1}, then we can differentiate the partial derivatives to obtain second-order partial derivatives

$$
\frac{\partial^{2} F^{i}}{\partial x^{k} \partial x^{j}}=\frac{\partial}{\partial x^{k}}\left(\frac{\partial F^{i}}{\partial x^{j}}\right)
$$

whenever they exist. Continuing in this way, the partial derivatives of F of order k are the partial derivatives of those of order $k-1$ whenever they exist.

Definition 7. Let $U \subset \mathbb{R}^{n}$ be open and let $F: U \rightarrow \mathbb{R}^{m}$. We say that F is of class C^{k} or k times continuously differentiable if all the partial derivatives of F of order less than or equal to k exist and are continuous functions on U. In particular, C^{0} is the class of continuous functions.

Remark 7. Let $U \subset \mathbb{R}^{n}$ be open and $F: U \rightarrow \mathbb{R}^{m}$. Then F is C^{k} iff for all $x \in U$, there is an open neighborhood N of x such that $F: N \cap U \rightarrow \mathbb{R}^{m}$ is C^{k}. Remark 8. If a function is C^{k+1}, then it is also C^{k}. Furthermore, a function is C^{k+1} iff its partial derivatives are C^{k}, and a function is C^{k} iff all of its component functions are C^{k}.

Definition 8. A function that is class C^{k} for all $k \geq 0$ is said to be class C^{∞}, smooth, or infinitely differentiable.

Remark 9. A function is smooth iff its partial derivatives are smooth iff its partial derivatives of all orders are smooth iff all of its component functions are smooth.

Proposition 7. Let $U \subset \mathbb{R}^{n}$ be open, and let $F: U \rightarrow \mathbb{R}^{m}$ be C^{2}. Then the mixed second-order partial derivatives of F do not depend on the order of differentiation:

$$
\frac{\partial^{2} F^{i}}{\partial x^{j} \partial x^{k}}=\frac{\partial^{2} F^{i}}{\partial x^{k} \partial x^{j}}
$$

for all i, j, and k.
Proof. Let $a \in U$. Since U is open, there is $\epsilon>0$ such that when $v \in B^{n}(0, \epsilon)$, $a+v \in U$. Let $\Delta: B^{1}(0, \epsilon / 2) \rightarrow \mathbb{R}$ be defined by

$$
\Delta(s)=F^{i}\left(a+s e_{j}+s e_{k}\right)-F^{i}\left(a+s e_{j}\right)-F\left(a+s e_{k}\right)+F(a) .
$$

Let $G_{s}: B^{1}(0, \epsilon / 2) \rightarrow \mathbb{R}$ be defined by

$$
G_{s}(t)=F^{i}\left(a+s e_{j}+t e_{k}\right)-F^{i}\left(a+t e_{k}\right)
$$

for each $s \in B^{1}(0, \epsilon / 2)$. Then each G_{s} is C^{1}, and

$$
\Delta(s)=G_{s}(s)-G_{s}(0)
$$

for all $s \in B^{1}(0, \epsilon / 2)$. By the mean value theorem, there is $\delta: B^{1}(0, \epsilon / 2) \rightarrow \mathbb{R}$ such that $0<|\delta(s)|<|s|$ for all $s \in B^{1}(0, \epsilon / 2)$ and

$$
\begin{equation*}
\frac{\Delta(s)}{s}=G_{s}^{\prime}(\delta(s))=\frac{\partial F^{i}}{\partial x^{k}}\left(a+s e_{j}+\delta(s) e_{k}\right)-\frac{\partial F}{\partial x^{k}}\left(a+\delta(s) e_{k}\right) \tag{5}
\end{equation*}
$$

for all $s \in B^{1}(0, \epsilon / 2)-\{0\}$. Since $\partial F^{i} / \partial x^{k}$ is C^{1}, and hence differentiable, we have that
$\frac{\partial F^{i}}{\partial x^{k}}\left(a+s e_{j}+\delta(s) e_{k}\right)=\frac{\partial F^{i}}{\partial x^{k}}(a)+\frac{\partial^{2} F^{i}}{\partial x^{j} \partial x^{k}}(a) s+\frac{\partial^{2} F^{i}}{\partial x^{k} \partial x^{k}}(a) \delta(s)+R\left(s e_{j}+\delta(s) e_{k}\right)$
and

$$
\frac{\partial F^{i}}{\partial x^{k}}\left(a+\delta(s) e_{k}\right)=\frac{\partial F^{i}}{\partial x^{k}}(a)+\frac{\partial^{2} F^{i}}{\partial x^{k} \partial x^{k}}(a) \delta(s)+R\left(\delta(s) e_{k}\right)
$$

for all $s \in B^{1}(0, \epsilon / 2)$. Substituting our last two equations into equation (5) implies that

$$
\begin{equation*}
\frac{\Delta(s)}{s^{2}}-\frac{\partial^{2} F^{i}}{\partial x^{j} \partial x^{k}}(a)=\frac{R\left(s e_{j}+\delta(s) e_{k}\right)}{s}-\frac{R\left(\delta(s) e_{k}\right)}{s} \tag{6}
\end{equation*}
$$

for all $s \in B^{1}(0, \epsilon / 2)-\{0\}$.
Now since $|\delta(s)| \leq|s|$ for each s, we have that

$$
\begin{equation*}
\frac{\left|R\left(\delta(s) e_{k}\right)\right|}{|s|} \leq \frac{\left|R\left(\delta(s) e_{k}\right)\right|}{\left|\delta(s) e_{k}\right|} \rightarrow 0 \tag{7}
\end{equation*}
$$

as $s \rightarrow 0$. If we give \mathbb{R}^{n} the ℓ^{∞} norm, we also have that $\left|s e_{j}+\delta(s) e_{k}\right|_{\infty} \leq|s|$. Therefore, by equivalence of norms, for the given arbitrary norm on \mathbb{R}^{n} there is a constant $C>0$ such that

$$
\left|s e_{j}+\delta(s) e_{k}\right| \leq C|s|
$$

for all s. Therefore

$$
\begin{equation*}
\frac{\left|R\left(s e_{j}+\delta(s) e_{k}\right)\right|}{|s|} \leq C \frac{\left|R\left(s e_{j}+\delta(s) e_{k}\right)\right|}{\left|s e_{j}+\delta(s) e_{k}\right|} \rightarrow 0 \tag{8}
\end{equation*}
$$

as $s \rightarrow 0$. Equation (6) and inequalities (7) and (8) then imply that

$$
\frac{\Delta(s)}{s^{2}} \rightarrow \frac{\partial^{2} F^{i}}{\partial x^{j} \partial x^{k}}(a)
$$

as $s \rightarrow 0$.
Now for each $s \in B^{1}(0, \epsilon / 2)$, let $H_{s}: B^{1}(0, \epsilon / 2) \rightarrow \mathbb{R}$ be defined by

$$
H_{s}(t)=F^{i}\left(a+t e_{j}+s e_{k}\right)-F^{i}\left(a+t e_{j}\right)
$$

Then by following a similar argument as before, using H_{s} in place of G_{s} and $\partial F^{i} / \partial x^{j}$ in place of $\partial F^{i} / \partial x^{k}$, we can also show that

$$
\frac{\Delta(s)}{s^{2}} \rightarrow \frac{\partial^{2} F^{i}}{\partial x^{k} \partial x^{j}}(a)
$$

as $s \rightarrow 0$. Hence the second order mixed partials agree at all $a \in U$, which is what we wanted to show.

Corollary 1. If $U \subset \mathbb{R}^{n}$ is open and $F: U \rightarrow \mathbb{R}^{m}$ is smooth, then the mixed partials of order $k+2$ do not depend on the order of differentiation for all k :

$$
\frac{\partial^{k+2} F^{i}}{\partial x^{j_{k+2}} \cdots \partial x^{j_{1}}}=\frac{\partial^{k+2} F^{i}}{\partial x^{j_{\sigma(k+2)}} \cdots \partial x^{j_{\sigma(1)}}}
$$

for all i, all k, all $(k+2)$-tuples $\left(j_{1}, \ldots, j_{k+2}\right)$ where each $1 \leq j_{l} \leq n$, and all permutations $\sigma:\{1, \ldots, k+2\} \rightarrow\{1, \ldots, k+2\}$.
Proof. We prove this by induction. The base case $k=0$ was proved by the last proposition. Suppose this holds for some $k \geq 0$. Now let $\left(j_{1}, \ldots, j_{k+3}\right)$ be a $(k+3)$-tuple where each $1 \leq j_{l} \leq k+3$, and let $\sigma:\{1, \ldots, k+3\} \rightarrow\{1, \ldots, k+3\}$ be a permutation. If $\sigma(k+3)=k+3$, then $\sigma:\{1, \ldots, k+2\} \rightarrow\{1, \ldots, k+2\}$ is a permutation. Therefore, for any i, we have that

$$
\begin{aligned}
\frac{\partial^{k+3} F^{i}}{\partial x^{j_{\sigma(k+3)} \cdots \partial x^{j_{\sigma(1)}}}} & =\frac{\partial}{\partial x^{j_{k+3}}}\left(\frac{\partial^{k+2} F^{i}}{\left.\partial x^{j_{\sigma(k+2)} \cdots \partial x^{j_{\sigma(1)}}}\right)}\right. \\
& =\frac{\partial}{\partial x^{j_{k+3}}}\left(\frac{\partial^{k+2} F^{i}}{\partial x^{j_{k+2}} \cdots \partial x^{j_{1}}}\right) \\
& =\frac{\partial^{k+3} F^{i}}{\partial x^{j_{k+3}} \cdots \partial x^{j_{1}}} .
\end{aligned}
$$

If instead $k+3 \in \sigma(\{1, \ldots, k+2\})$, then we also have that $\sigma(k+3) \in\{1, \ldots, k+$ $2\}$. Let $l \in\{1, \ldots, k+2\}$ be such that $\sigma(l)=k+3$. For convenience, assume that $1<l<k+2$. Then for all i,

$$
\begin{aligned}
& \frac{\partial^{k+3} F^{i}}{\partial x^{j_{\sigma}(k+3)} \cdots \partial x^{j_{\sigma}(1)}}=\frac{\partial}{\partial x^{j_{\sigma}(k+3)}}\left(\frac{\partial^{k+2} F^{i}}{\partial x^{j_{\sigma(k+2)} \cdots \partial x^{j_{\sigma}(1)}}}\right) \\
& =\frac{\partial}{\partial x^{j_{\sigma}(k+3)}}\left(\frac{\partial^{k+2} F^{i}}{\partial x^{j_{\sigma}(l)} \partial x^{j_{\sigma(k+2)}} \cdots \partial x^{j_{\sigma(1)}}}\right) \\
& =\frac{\partial^{2}}{\partial x^{j_{\sigma(k+3)}} \partial x^{j_{\sigma(l)}}}\left(\frac{\partial^{k+1} F^{i}}{\partial x^{j_{\sigma(k+2)}} \cdots \partial x^{j_{\sigma(1)}}}\right) \\
& =\frac{\partial^{2}}{\partial x^{j_{\sigma}(l)} \partial x^{j_{\sigma(k+3)}}}\left(\frac{\partial^{k+1} F^{i}}{\partial x^{j_{\sigma(k+2)}} \cdots \partial x^{j_{\sigma(1)}}}\right) \\
& =\frac{\partial}{\partial x^{j_{k+3}}}\left(\frac{\partial^{k+2} F^{i}}{\partial x^{j_{\sigma(k+3)}} \cdots \partial x^{j_{\sigma(1)}}}\right) \\
& =\frac{\partial^{k+3} F^{i}}{\partial x^{j_{k+3}} \cdots \partial x^{j_{1}}} .
\end{aligned}
$$

The case when $l=1$ or $l=k+2$ follows almost exactly as above, just with some slight modifications to the notation. Therefore the proof is finished by induction.

5 Diffeomorphisms

Definition 9. If U and V are open subsets of Euclidean space, a function $F: U \rightarrow V$ is a diffeomorphism if it is smooth, bijective, and its inverse is
smooth.
Remark 10. Every diffeomorphism between open subsets of Euclidean space is a homeomorphism.

Proposition 8. Let $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$, be open, and let $F: U \rightarrow V$ be a diffeomorphism. Then $m=n$, and for each $a \in U$, the total derivative $\operatorname{DF}(a)$ is invertible with $D F(a)^{-1}=D\left(F^{-1}\right)(F(a))$.
Proof. Since F is a diffeomorphism, in particular F and F^{-1} are both C^{1} and hence differentiable, so $D F(a)$ exists at each $a \in U$ and $D\left(F^{-1}\right)(b)$ exists at each $b \in V$. Hence $F^{-1} \circ F=I_{U}$ is differentiable, and it is easy to verify that

$$
D I_{U}(a)=I_{\mathbb{R}^{n}}
$$

so

$$
I_{\mathbb{R}^{n}}=D\left(F^{-1} \circ F\right)(a)=D\left(F^{-1}\right)(F(a)) \circ D F(a)
$$

Similarly, since $F \circ F^{-1}=I_{V}$, we also have that

$$
I_{\mathbb{R}^{m}}=D F(a) \circ D\left(F^{-1}\right)(F(a))
$$

Hence $D F(a)$ is an invertible linear map from \mathbb{R}^{n} to \mathbb{R}^{m} with inverse

$$
D F(a)^{-1}=D\left(F^{-1}\right)(F(a)),
$$

and thus $n=m$.

6 Smooth Real-Valued Functions

Definition 10. If $U \subset \mathbb{R}^{n}$ is open, we let $C^{k}(U)$ denote the set of all C^{k} functions from U to \mathbb{R}, and we let $C^{\infty}(U)$ denote the set of all smooth functions from U to \mathbb{R}. Sums, scalar multiples, and products are all defined pointwise: given $f, g: U \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$,

$$
\begin{gathered}
(f+g)(x)=f(x)+g(x), \\
(c f)(x)=c(f(x)), \\
(f g)(x)=f(x) g(x),
\end{gathered}
$$

Proposition 9. Let $U \subset \mathbb{R}^{n}$ be open and let $f, g \in C^{\infty}(U)$ and $c \in \mathbb{R}$. Then $f+g$, cf, and fg all belong to $C^{\infty}(U)$. Thus $C^{\infty}(U)$ is a commutative ring and a commutative and associative algebra over \mathbb{R}.

Proof. From the definitions:

$$
\frac{\partial(c f+g)}{\partial x^{j}}(x)=c \frac{\partial f}{\partial x^{j}}(x)+\frac{\partial g}{\partial x^{j}}(x)
$$

for all j and all x. Thus $c f+g$ is C^{1}. In fact, this shows that taking partial derivatives is a linear operation. Now if $c f+g$ is $C^{1}, C^{2}, \ldots, C^{k}$, and if an order k partial derivative of $f+g$ is of the form

$$
\frac{\partial^{k}(c f+g)}{\partial x^{j_{k}} \cdots \partial x^{j_{1}}}(x)=c \frac{\partial^{k} f}{\partial x^{j_{k}} \cdots \partial x^{j_{1}}}(x)+\frac{\partial^{k} g}{\partial x^{j_{k}} \cdots \partial x^{j_{1}}}(x),
$$

then an order $k+1$ partial derivative of $c f+g$ is of the form

$$
\frac{\partial^{k+1}(c f+g)}{\partial x^{j_{k+1}} \cdots \partial x^{j_{1}}}(x)=c \frac{\partial^{k+1} f}{\partial x^{j_{k+1}} \cdots \partial x^{j_{1}}}(x)+\frac{\partial^{k+1} g}{\partial x^{j_{k+1}} \cdots \partial x^{j_{1}}}(x)
$$

which is continuous. Hence, by induction, $c f+g$ is smooth. Taking $c=1$ shows that $f+g$ is smooth for all smooth f and g, and taking $g=0$ shows that $c f$ is smooth for all c and all smooth f.

Now

$$
\begin{aligned}
\frac{\partial(f g)}{\partial x^{j}}(x) & =\lim _{h \rightarrow 0} \frac{f\left(x+h e_{j}\right) g\left(x+h e_{j}\right)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f\left(x+h e_{j}\right)-f(x)}{h} g\left(x+h e_{j}\right)+f(x) \frac{g\left(x+h e_{j}\right)-g(x)}{h}\right) \\
& =\frac{\partial f}{\partial x^{j}}(x) g(x)+f(x) \frac{\partial g}{\partial x^{j}}(x)
\end{aligned}
$$

for all x and all j, so we conclude that $f g$ is C^{1}, and the partial derivatives of $f g$ of order 1 are sums of products of partial derivatives of f and g of order at most 1 .

Now suppose that $f g$ is $C^{1}, C^{2}, \ldots, C^{k}$ and the partial derivatives of $f g$ of order k are sums of products of partial derivatives of f and g of order at most k. A particular term in a k th order partial derivative of $f g$ is of the form

$$
\frac{\partial^{i} f}{\partial x^{j_{i}} \cdots \partial x^{j_{1}}}(x) \frac{\partial^{l} g}{\partial x^{j_{l}} \cdots \partial x^{j_{1}}}(x)
$$

where $0 \leq i, l \leq k$ (a partial derivative of order 0 is just $f(x)$ or $g(x)$). Therefore, differentiating one of these terms gives us a term of the form

$$
\frac{\partial^{i+1} f}{\partial x^{j} \partial x^{j_{i}} \cdots \partial x^{j_{1}}}(x) \frac{\partial^{l} g}{\partial x^{j_{l}} \cdots \partial x^{j_{1}}}(x)+\frac{\partial^{i} f}{\partial x^{j_{i}} \cdots \partial x^{j_{1}}}(x) \frac{\partial^{l+1} g}{\partial x^{j} \partial x^{j_{l}} \cdots \partial x^{j_{1}}}(x) .
$$

Since taking partial derivatives is a linear operation, differentiating an order k partial derivative of $f g$ to obtain an order $k+1$ partial derivative of $f g$ will give us some of terms like above, which shows that all order $k+1$ partial derivatives of $f g$ are continuous. Hence, by induction, $f g$ is smooth when f and g are smooth.

It immediately follows from the algebraic properties of \mathbb{R} that $C^{\infty}(U)$ is a commutative ring and a commutative and associative algebra over \mathbb{R}. The additive identity is the 0 function, the multiplicative identity is the constant 1 function, and the additive inverse of f is the function $-f=(-1) f$.

Proposition 10. Let $U \subset \mathbb{R}^{n}$ and $\tilde{U} \subset \mathbb{R}^{m}$ be open.

1. If $F: U \rightarrow \tilde{U}$ and $G: \tilde{U} \rightarrow \mathbb{R}^{p}$ are C^{1}, then $G \circ F: U \rightarrow \mathbb{R}^{p}$ is C^{1}, and its partial derivatives are given by

$$
\frac{\partial\left(G^{i} \circ F\right)}{\partial x^{j}}(x)=\sum_{j=1}^{m} \frac{\partial G^{i}}{\partial y^{k}}(F(x)) \frac{\partial F^{k}}{\partial x^{j}}(x) .
$$

2. If F and G are smooth, then $G \circ F$ is smooth.

Proof. Since F and G are C^{1}, they are differentiable, so $G \circ F$ is also differentiable, and for each $x \in U$, the matrix of $D(G \circ F)(x)$ is given by

$$
\begin{aligned}
\frac{\partial\left(G^{i} \circ F\right)}{\partial x^{j}}(x) & =[D(G \circ F)(x)]_{j}^{i} \\
& =[D G(F(x)) \circ D F(x)]_{j}^{i} \\
& =\sum_{k=1}^{m}[D G(F(x))]_{k}^{i}[D F(x)]_{j}^{k} \\
& =\sum_{k=1}^{m} \frac{\partial G^{i}}{\partial y^{k}}(F(x)) \frac{\partial F^{k}}{\partial x^{j}}(x) .
\end{aligned}
$$

This shows that the partial derivatives of $G \circ F$ are sums of products of continuous functions, which is continuous. Hence $G \circ F$ is C^{1}. Thus the composition of C^{1} functions is C^{1}.

Suppose now that the composition of C^{k} functions is C^{k}. If F and G are C^{k+1}, then let

$$
H_{l}^{i}(y)=\frac{\partial G^{i}}{\partial y^{l}}(y)
$$

for all i, l, and y. Then our computation above shows that

$$
\frac{\partial G^{i} \circ F}{\partial x^{j}}(x)=\sum_{l=1}^{n}\left(H_{l}^{i} \circ F(x)\right) \frac{\partial F^{k}}{\partial x^{j}}(x)
$$

for all i, j, and x. Since G is C^{k+1}, each H_{l}^{i} is C^{k}. Since F is C^{k+1}, and hence is also C^{k}, we have that $H_{l}^{i} \circ F$ is C^{k} and $\partial F^{k} / \partial x^{j}$ is also C^{k}. Therefore the partials of $G^{i} \circ F$ are sums of products of C^{k} functions, and hence is C^{k}. Therefore each $G^{i} \circ F$ is C^{k+1}, so $G \circ F$ is C^{k+1} whenever G and F are C^{k+1}. Hence, by induction, the composition of C^{k} functions is C^{k} for all k. From this, it follows that the composition of smooth functions is smooth.

Corollary 2. Let $U \subset \mathbb{R}^{n}$ be open, and let $f, g: U \rightarrow \mathbb{R}$. If f and g are smooth, and if g never vanishes on U, then f / g is smooth.
Proof. Let $h: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be defined by $h(x)=1 / x$. Then for any $x \neq 0$,

$$
h^{\prime}(x)=-1 / x^{2}
$$

which is continuous. Therefore h is C^{1}, and

$$
h^{\prime}(x)=\frac{(-1)^{1} 1!}{x^{1+1}}
$$

for all $x \in \mathbb{R}-\{0\}$. Now suppose that h is C^{k} and

$$
\frac{d^{k} h}{d x^{k}}(x)=\frac{(-1)^{k} k!}{x^{1+k}}=(-1)^{k} k!h(p(x))
$$

for all $x \in \mathbb{R}-\{0\}$, where $p: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $p(x)=x^{1+k}$. Then since $p^{\prime}(x)=(k+1) x^{k}$, we have from the chain rule that

$$
\frac{d^{k+1} h}{d x^{k+1}}(x)=\frac{(-1)^{k+1}(k+1)!}{x^{1+k+1}}
$$

for all $x \in \mathbb{R}-\{0\}$. Hence, by induction, h is smooth. Since $f / g=f \cdot(h \circ g)$ on U, and since the multiplication and composition of smooth functions is smooth, we conclude that f / g is smooth.

7 Extension to Non-Open Subsets

Definition 11. If $A \subset \mathbb{R}^{n}$, then $F: A \rightarrow \mathbb{R}^{m}$ is smooth on A if for all $x \in A$, there is an open neighborhood $U \subset \mathbb{R}^{n}$ of x and a smooth function $\tilde{F}: U \rightarrow \mathbb{R}^{m}$ such that $\tilde{F}=F$ on $U \cap A$. We call such an \tilde{F} a smooth extension of F on an open neighborhood of x.

Remark 11. If $U \subset \mathbb{R}^{n}$ is open, then $F: U \rightarrow \mathbb{R}^{m}$ is smooth on U as above iff $F: U \rightarrow \mathbb{R}^{m}$ is smooth in the previously defined sense.
Remark 12. Let $A \subset \mathbb{R}^{m}$. If $F: A \rightarrow \mathbb{R}^{n}$ is smooth, then F is continuous.
Proposition 11. Let $A \subset \mathbb{R}^{n}, B \subset \mathbb{R}^{m}, F: A \rightarrow \mathbb{R}^{m}, G: B \rightarrow \mathbb{R}^{p}$, and $F(A) \subset B$. If F and G are smooth, then $G \circ F: A \rightarrow \mathbb{R}^{p}$ is smooth.

Proof. Let $x \in A$. Then there is an open neighborhood V of $f(x)$ and a smooth function $\tilde{G}: V \rightarrow \mathbb{R}^{p}$ such that $\tilde{G}=G$ on $V \cap B$, and there is an open neighborhood U of x and a smooth function $\tilde{F}: U \rightarrow \mathbb{R}^{m}$ such that $\tilde{F}=F$ on $U \cap A$. Then $U \cap \tilde{F}^{-1}(V)$ is an open neighborhood of x and $\tilde{G} \circ \tilde{F}: U \cap \tilde{F}^{-1}(V) \rightarrow$ \mathbb{R}^{p} is a smooth function such that $\tilde{G} \circ \tilde{F}=G \circ F$ on $U \cap \tilde{F}^{-1}(V) \cap A$. Hence $G \circ F: A \rightarrow \mathbb{R}^{p}$ is smooth.

Definition 12. Given $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$, a diffeomorphism from A to B is a smooth bijection $F: A \rightarrow B$ with smooth inverse.

Remark 13. Every diffeomorphism between subsets of Euclidean space is a homeomorphism.

8 Directional Derivatives

Definition 13. Let $f: U \rightarrow \mathbb{R}$ be a smooth real-valued function on an open subset U of \mathbb{R}^{n}. For each $v \in \mathbb{R}^{n}$, each $a \in U$, the directional derivative of f in the direction of v at a is the number

$$
D_{v} f(a)=\left.\frac{d}{d t}\right|_{t=0} f(a+t v)
$$

Remark 14. More precisely, given $a \in U$ and $v \in \mathbb{R}^{n}$, since U is open, there is an $\epsilon>0$ such that $a+t v \in U$ for all $t \in \mathbb{R}$ such that $|t|<\epsilon$. Let $g:(-\epsilon, \epsilon) \rightarrow U$ be defined by

$$
g(t)=a+t v .
$$

Since the map g is smooth, $f \circ g$ is smooth. Then

$$
D_{v} f(a)=(f \circ g)^{\prime}(0)=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}}(a) v^{i},
$$

where the last equality follows from the chain rule.

9 The Inverse Function Theorem and the Implicit Function Theorem

Definition 14. Let (X, d) be a metric space. A map $G: X \rightarrow X$ is a contraction if there is a constant $\lambda \in(0,1)$ such that $d(G(x), G(y)) \leq \lambda d(x, y)$ for all $x, y \in X$. We call such a λ a contraction constant for G.

Remark 15. Every contraction is continuous.
Definition 15. Let X be a set. A fixed point of a map $G: X \rightarrow X$ is a point $x \in X$ such that $G(x)=x$.

Lemma 1 (Contraction Lemma). Let (X, d) be a nonempty complete metric space. Every contraction $G: X \rightarrow X$ has a unique fixed point.

Proof. Let $x_{0} \in X$. Let $x_{i+1}=G\left(x_{i}\right)$ for all $i \geq 0$. Let λ be a contraction constant for G. Then the sequence $\left(x_{n}\right) \subset X$ satisfies

$$
d\left(x_{i}, x_{i+1}\right)=d\left(G\left(x_{i-1}\right), G\left(x_{i}\right)\right) \leq \lambda d\left(x_{i-1}, x_{i}\right)
$$

for all $i \geq 1$. By induction, we conclude that

$$
d\left(x_{i}, x_{i+1}\right) \leq \lambda^{i} d\left(x_{0}, x_{1}\right)
$$

for all i. Hence for any $i<j$, we have that

$$
\begin{aligned}
d\left(x_{i}, x_{j}\right) & \leq d\left(x_{i}, x_{i+1}\right)+d\left(x_{i+1}, x_{i+2}\right)+\cdots+d\left(x_{j-1}, x_{j}\right) \\
& \leq \lambda^{i}\left(1+\lambda+\cdots+\lambda^{j-i-1}\right) d\left(x_{0}, x_{1}\right) \\
& =\lambda^{i} \frac{1-\lambda^{j-i}}{1-\lambda} d\left(x_{0}, x_{1}\right) \\
& \leq \lambda^{i} \frac{d\left(x_{0}, x_{1}\right)}{1-\lambda} .
\end{aligned}
$$

Since $0 \leq d\left(x_{i}, x_{j}\right)=d\left(x_{j}, x_{i}\right)$ for all i, j, and since $0=d\left(x_{i}, x_{i}\right)$ for all i, we then conclude that

$$
0 \leq d\left(x_{i}, x_{j}\right) \leq \lambda^{\min \{i, j\}} \frac{d\left(x_{0}, x_{1}\right)}{1-\lambda}
$$

for all i, j. Now since the last term converges to 0 as $i, j \rightarrow \infty$, we conclude that $\left(x_{n}\right)$ is a Cauchy sequence in X. Therefore, since X is complete, there is an $x \in X$ such that $x_{n} \rightarrow x$. Since contractions are continuous, we then have that $G\left(x_{n}\right) \rightarrow G(x)$. However, since $G\left(x_{n}\right)=x_{n-1}$ for all $n \geq 1$, we then conclude that $x_{n} \rightarrow G(x)$ as well. In other words, $G(x)=x$, so x is a fixed point of G.

If x^{\prime} is another fixed point, then

$$
d\left(x, x^{\prime}\right)=d\left(G(x), G\left(x^{\prime}\right)\right) \leq \lambda d\left(x, x^{\prime}\right)
$$

Since $0<\lambda<1$, this implies that $d\left(x, x^{\prime}\right)=0$, so that $x=x^{\prime}$. Therefore G has exactly one fixed point.

Proposition 12 (Lipschitz Estimate for C^{1} Functions). Let $U \subset \mathbb{R}^{n}$ be open, and let $F: U \rightarrow \mathbb{R}^{m}$ be C^{1}. Then F is Lipschitz continuous on every compact convex subset $K \subset U$, with Lipschitz constant $\sup _{x \in K}|D F(x)|$, where

$$
|D F(x)|=\sqrt{\sum_{i, j}\left([D F(x)]_{j}^{i}\right)^{2}}
$$

and $[D F(x)]$ is the standard matrix representation of $D F(x)$.
Proof. Let $a, b \in K$. Then for all $0 \leq t \leq 1, a+t(b-a) \in K$. From the fundamental theorem of calculus and the chain rule,

$$
\begin{aligned}
F(b)-F(a) & =\int_{0}^{1} \frac{d}{d t} F(a+t(b-a)) d t \\
& =\int_{0}^{1}[D F(a+t(b-a))](b-a) d t
\end{aligned}
$$

Therefore, by properties of the integral and properties of the given matrix norm,

$$
|F(b)-F(a)| \leq\left(\sup _{x \in K}|D F(x)|\right)|b-a| .
$$

Lemma 2 (The Inverse Function Theorem, Special Case). Let U and V be open neighborhoods of 0 in \mathbb{R}^{n}. Let $F: U \rightarrow V$ be smooth and such that $F(0)=0$ and $D F(0)=I_{n}$. Also, suppose that $D F(x)$ is invertible for all $x \in U$. Then there are connected open neighborhoods $U_{0} \subset U$ and $V_{0} \subset V$ of 0 such that $F: U_{0} \rightarrow V_{0}$ is a diffeomorphism.

Proof. Step 1: Finding a neighborhood of 0 for which F is injective. Let $H(x)=$ $x-F(x)$ for each $x \in U$. Then $D H(0)=I_{n}-I_{n}=0$. Observe that the matrix entries of $[D H]=\left[I_{n}-D F\right]$ are continuous functions on U. Hence $D H: U \rightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \cong \mathbb{R}^{n^{2}}$ is continuous at $0 \in U$. Therefore, there is a $\delta>0$ such that $K:=\overline{B_{\delta}(0)} \subset U$ and for all $x \in K$,

$$
|D H(x)-D H(0)|=|D H(x)| \leq 1 / 2 .
$$

From the Lipschitz estimate for C^{1} functions applied to the function H and the compact set K,

$$
\left|H(x)-H\left(x^{\prime}\right)\right| \leq \frac{1}{2}\left|x-x^{\prime}\right|
$$

for all $x, x^{\prime} \in K$. Taking $x^{\prime}=0$ gives us

$$
\begin{equation*}
|H(x)| \leq \frac{1}{2}|x| \tag{9}
\end{equation*}
$$

for all $x \in K$. Since

$$
x-x^{\prime}=F(x)-F\left(x^{\prime}\right)+H(x)-H\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in U \supset K$, we also have that

$$
\left|x-x^{\prime}\right| \leq\left|F(x)-F\left(x^{\prime}\right)\right|+\left|H(x)-H\left(x^{\prime}\right)\right| \leq\left|F(x)-F\left(x^{\prime}\right)\right|+\frac{1}{2}\left|x-x^{\prime}\right|
$$

for all $x, x^{\prime} \in K$. This implies that

$$
\begin{equation*}
0 \leq\left|x-x^{\prime}\right| \leq 2\left|F(x)-F\left(x^{\prime}\right)\right| \tag{10}
\end{equation*}
$$

for all $x, x^{\prime} \in K$, so that F is injective on K.
Step 2: Finding a neighborhood of 0 for which F is bijective. Let $y \in$ $B_{\delta / 2}(0) \subset K$. We will show that there is $x \in B_{\delta}(0) \subset K$ such that $F(x)=y$. For all $x \in K$, let $G(x)=y+H(x)=y+x-F(x)$. Then $G(x)=x$ iff $F(x)=y$. Now for all $x \in K$, equation (9) implies that

$$
|G(x)| \leq|y|+|H(x)|<\frac{\delta}{2}+\frac{1}{2}|x| \leq \delta .
$$

Then $G: K \rightarrow B_{\delta}(0) \subset K$, and

$$
\left|G(x)-G\left(x^{\prime}\right)\right|=\left|H(x)-H\left(x^{\prime}\right)\right| \leq \frac{1}{2}\left|x-x^{\prime}\right|
$$

for all $x, x^{\prime} \in K$. Hence $G: K \rightarrow B_{\delta}(0) \subset K$ is a contraction map, so by the contraction mapping lemma, there is a unique $x \in K$ such that $G(x)=x \in$ $B_{\delta}(0)$. Therefore there is a unique $x \in B_{\delta}(0)$ such that $F(x)=y$.

Step 3: Finding U_{0}, V_{0}, and $F^{-1}: V_{0} \rightarrow U_{0}$. Let $V_{0}=B_{\delta / 2}(0) \subset K \subset U$ and let $U_{0}=B_{\delta}(0) \cap F^{-1}\left(V_{0}\right) \subset K \subset U$. Then $U_{0} \subset U$ and V_{0} are open and steps 1 and 2 show that $F: U_{0} \rightarrow V_{0}$ is bijective. Hence $F^{-1}: V_{0} \rightarrow U_{0}$ exists. Given $y \in V_{0}$, we have that $F^{-1}(y) \in U_{0} \subset U$, so $y=F\left(F^{-1}(y)\right) \in F(U) \subset V$. Hence $V_{0} \subset V$ as well. Since equation (10) applies to all $x, x^{\prime} \in K \supset U_{0}$, for any $y, y^{\prime} \in V_{0}$, we have that

$$
\left|F^{-1}(y)-F^{-1}\left(y^{\prime}\right)\right| \leq 2\left|y-y^{\prime}\right|
$$

so that $F^{-1}: V_{0} \rightarrow U_{0}$ is continuous (even Lipschitz continuous). Therefore $F: U_{0} \rightarrow V_{0}$ is a homeomorphism, so since V_{0} is connected, U_{0} is also connected.

Step 4: Showing $F^{-1}: V_{0} \rightarrow U_{0}$ is differentiable. Let $y \in V_{0}$, and let $y^{\prime} \in V_{0}-\{y\}$. Let $x=F^{-1}(y) \in U_{0}$ and let $L=D F(x)$. Since $F^{-1}\left(V_{0}\right)=$ $U_{0} \subset K \subset U$, we have that L^{-1} exists by assumption and is linear since L is linear. Let $x^{\prime}=F^{-1}\left(y^{\prime}\right) \in U_{0}$. Since F^{-1} is injective, $x \neq x^{\prime}$. We also have that $y=F(x)$ and $y^{\prime}=F\left(x^{\prime}\right)$. Therefore, all of our observations imply that

$$
\frac{\left|F^{-1}\left(y^{\prime}\right)-F^{-1}(y)-L^{-1}\left(y^{\prime}-y\right)\right|}{\left|y^{\prime}-y\right|}=\frac{\left|x^{\prime}-x\right|}{\left|y^{\prime}-y\right|} \frac{\left|L^{-1}\left(L\left(x^{\prime}-x\right)-F\left(x^{\prime}\right)+F(x)\right)\right|}{\left|x^{\prime}-x\right|} .
$$

Since equation (10) applies to all $x, x^{\prime} \in K \supset U_{0}$, we have that

$$
\frac{\left|x^{\prime}-x\right|}{\left|y^{\prime}-y\right|} \leq 2
$$

Since L^{-1} is a linear map between finite dimensional vector spaces, there is a constant $C>0$ such that

$$
\left|L^{-1}\left(L\left(x^{\prime}-x\right)-F\left(x^{\prime}\right)+F(x)\right)\right| \leq C\left|F\left(x^{\prime}\right)-F(x)-L\left(x^{\prime}-x\right)\right| .
$$

Therefore

$$
0 \leq \frac{\left|F^{-1}\left(y^{\prime}\right)-F^{-1}(y)-L^{-1}\left(y^{\prime}-y\right)\right|}{\left|y^{\prime}-y\right|} \leq 2 C \frac{\left|F\left(x^{\prime}\right)-F(x)-L\left(x^{\prime}-x\right)\right|}{\left|x^{\prime}-x\right|}
$$

Now if $y^{\prime} \rightarrow y$, since F^{-1} is continuous, $x^{\prime} \rightarrow x$. Then since $L=D F(x)$ and since F is differentiable,

$$
\frac{\left|F\left(x^{\prime}\right)-F(x)-L\left(x^{\prime}-x\right)\right|}{\left|x^{\prime}-x\right|} \rightarrow 0
$$

as $x^{\prime} \rightarrow x$. Hence

$$
\frac{\left|F^{-1}\left(y^{\prime}\right)-F^{-1}(y)-L^{-1}\left(y^{\prime}-y\right)\right|}{\left|y^{\prime}-y\right|} \rightarrow 0
$$

as $y^{\prime} \rightarrow y$, so F^{-1} is differentiable at each $y \in V_{0}$ and

$$
D\left(F^{-1}\right)(y)=D F\left(F^{-1}(y)\right)^{-1}
$$

Step 5: Showing $F^{-1}: V_{0} \rightarrow U_{0}$ is C^{1}. Since F^{-1} is differentiable, the partial derivatives of F^{-1} exist and are the entries of the matrix-valued function $y \mapsto$ $\left[D\left(F^{-1}\right)(y)\right]=\left[D F\left(F^{-1}(y)\right)\right]^{-1}$. This map can be realized as the composition of the maps

$$
\begin{equation*}
y \mapsto F^{-1}(y) \mapsto\left[D F\left(F^{-1}(y)\right)\right] \mapsto\left[D F\left(F^{-1}(y)\right]^{-1}\right. \tag{11}
\end{equation*}
$$

We have that F^{-1} is continuous, $x \mapsto[D F(x)]$ is smooth as a map from U_{0} to $\mathbb{R}^{n^{2}} \cong G L(n, \mathbb{R})$, and, because of Cramer's rule, taking inverses of invertible matrices is smooth when thought of as a map from $G L(n, \mathbb{R}) \cong \mathbb{R}^{n^{2}} \rightarrow$ $G L(n, \mathbb{R}) \cong \mathbb{R}^{n^{2}}$. Therefore all the intermediate maps in the composition are at least continuous, so the entries of the map $y \mapsto\left[D\left(F^{-1}\right)(y)\right]$ are continuous maps on V_{0}. In other words, all the partial derivatives of F^{-1} exist and are continuous, so F^{-1} is C^{1}.

Step 6: Showing F^{-1} is smooth. Suppose that F^{-1} is C^{k}. Then each of the maps in (11) is C^{k}, which implies that the entries of $y \mapsto\left[D\left(F^{-1}\right)(y)\right]$ are C^{k}. In other words, all the partial derivatives of F^{-1} are C^{k}, so F^{-1} is C^{k+1}. Therefore, by induction, F^{-1} is smooth.

Theorem 1 (The Inverse Function Theorem, General Case). Let U and V be open subsets of \mathbb{R}^{n}, and let $F: U \rightarrow V$ be smooth. Let $a \in U$, and suppose that $D F(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible. Then there exist connected open neighborhoods $U_{0} \subset U$ of a and $V_{0} \subset V$ of $F(a)$ such that $F: U_{0} \rightarrow V_{0}$ is a diffeomorphism.

Proof. First we reduce to the special case. Let $a \in U$. Then since V is open, there is an $r>0$ such that $F(a) \in B_{r}(F(a)) \subset V$, and there is an $s>0$ such that $a \in B_{s}(a) \cap F^{-1}\left(B_{r}(F(a))\right) \subset U$. Since $B_{s}(a) \cap F^{-1}\left(B_{r}(F(a))\right)$ is open, there is an $s^{\prime}>0$ such that $a \in B_{s^{\prime}}(a) \subset B_{s}(a) \cap F^{-1}\left(B_{r}(F(a))\right)$. Observe that when $x \in U_{1}:=B_{s^{\prime}}(0), a+x \in B_{s^{\prime}}(a)$ and $F_{1}(x):=F(a+x)-F(a) \in B_{r}(0):=V_{1}$. Then $F_{1}: U_{1} \rightarrow V_{1}$ is a smooth map between connected open neighborhoods U_{1} of 0 and V_{1} of $F_{1}(0)=0$. Also, we have that $D\left(F_{1}\right)(0)=D F(a)$, so $D\left(F_{1}\right)(0)$ is invertible. Now let $F_{2}(x)=D\left(F_{1}\right)(0)^{-1}\left(F_{1}(x)\right)$ for all $x \in U_{1}$. Then since $F_{2}: U_{1} \rightarrow \mathbb{R}^{n}$ is the composition of a smooth map and a linear map, we have that $F_{2}: U_{1} \rightarrow \mathbb{R}^{n}$ is smooth. We also have that $F_{2}(0)=0$ since $F_{1}(0)=0$ and $D\left(F_{1}\right)(0)^{-1}$ is linear. Furthermore, by the chain rule and linearity of $D\left(F_{1}\right)(0)^{-1}$, we have that

$$
D\left(F_{2}\right)(0)=D\left(D\left(F_{1}\right)(0)^{-1}\right)\left(F_{1}(0)\right) \circ D\left(F_{1}\right)(0)=D\left(F_{1}\right)(0)^{-1} \circ D\left(F_{1}\right)(0)=I_{n}
$$

Since F_{2} is smooth, there is an $s^{\prime}>s^{\prime \prime}>0$ such that $F_{2}\left(B_{s^{\prime \prime}}(0)\right) \subset B_{r}(0)=V_{1}$. Let $U_{2}=B_{s^{\prime \prime}}(0)$, so that $U_{2} \subset U_{1}$. The map $x \mapsto \operatorname{det}\left[D\left(F_{2}\right)(x)\right]$ is smooth on U_{2} since it is a polynomial of the partial derivatives of F_{2} which are smooth functions. Therefore, there is an $0<s^{\prime \prime \prime}<s^{\prime \prime}$ such that when $|x|<s^{\prime \prime \prime}$, we have that

$$
1-\left|\operatorname{det}\left[D\left(F_{2}\right)(x)\right]\right| \leq\left|\operatorname{det}\left[D\left(F_{2}\right)(0)\right]-\operatorname{det}\left[D\left(F_{2}\right)(x)\right]\right|<1 / 2 .
$$

Hence when $x \in U_{3}:=B_{s^{\prime \prime \prime}}(0) \subset U_{2}$, we have that

$$
\left|\operatorname{det}\left[D\left(F_{2}\right)(x)\right]\right|>1 / 2
$$

and thus $D\left(F_{2}\right)(x)$ is invertible for all $x \in U_{3}$. Hence the map $F_{2}: U_{3} \rightarrow V_{1}$ is a smooth map between connected open neighborhoods U_{3} and V_{1} of 0 which satisfies $D F_{2}(0)=I_{n}, F_{2}(0)=0$, and $D\left(F_{2}\right)(x)$ is invertible for all $x \in U_{3}$.

We now apply the special case to $F_{2}: U_{3} \rightarrow V_{1}$ to conclude that there are connected open neighborhoods $U_{4} \subset U_{3}$ and $V_{2} \subset V_{1}$ of 0 such that F_{2} : $U_{4} \rightarrow V_{2}$ is a diffeomorphism. Then since $F_{1}=D\left(F_{1}\right)(0) \circ F_{2}: U_{4} \rightarrow V_{3}:=$ $D\left(F_{1}\right)(0)\left(V_{2}\right)$, which is the composition of smooth maps between connected open neighborhoods of 0 , we have that $F_{1}: U_{4} \rightarrow V_{3}$ is smooth. Furthermore, we also have that $F_{1}^{-1}=F_{2}^{-1} \circ D\left(F_{1}\right)(0)^{-1}: V_{3} \rightarrow U_{4}$ exists and is smooth, so $F_{1}: U_{4} \rightarrow V_{3}$ is a diffeomorphism between connected open neighborhoods of 0 . Now if $x \in U_{0}:=a+U_{4} \subset U$, then $x-a \in U_{4}$ and

$$
F(x)=F_{1}(x-a)+F(a) \in V_{0}:=F(a)+V_{3} .
$$

Therefore $F: U_{0} \rightarrow V_{0}$ is smooth. Given $y \in F(a)+V_{3}, y=F(a)+z$ for some $z \in V_{3}=F_{1}\left(U_{4}\right)$, so $y=F(a)+F_{1}\left(z^{\prime}\right)$ for some $z^{\prime} \in U_{4}$. Then $a+z^{\prime} \in U_{0}$ and

$$
F\left(a+z^{\prime}\right)=F_{1}\left(z^{\prime}\right)+F(a)=y .
$$

Hence $F: U_{0} \rightarrow V_{0}$ is bijective. Thus, given $y \in V_{0}, F^{-1}(y) \in U_{0} \subset U$, and thus $y \in F(U) \subset V$. Thus $U_{0} \subset U$ is a connected open neighborhood of a and $V_{0} \subset V$ is a connected open neighborhood of $F(a)$. Finally, we also have that

$$
F^{-1}(y)=F_{1}^{-1}(y-F(a))+a
$$

for all $y \in V_{0}$. Hence $F^{-1}: U_{0} \rightarrow V_{0}$ is smooth, so $F: U_{0} \rightarrow V_{0}$ is a diffeomorphism between a connected open neighborhood $U_{0} \subset U$ of a and $V_{0} \subset V$ of $F(a)$. This completes the proof.

Theorem 2 (The Implicit Function Theorem). Let $U \subset \mathbb{R}^{n} \times \mathbb{R}^{k}$ be open and let $\phi: U \rightarrow \mathbb{R}^{k}$ be smooth. Let $(x, y)=\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{k}\right)$ denote the standard coordinates on U. Let $(a, b) \in U$ and let $c=\phi(a, b)$. Suppose that the $k \times k$ matrix

$$
\left[\frac{\partial \phi^{i}}{\partial y^{j}}(a, b)\right]
$$

is nonsingular. Then there are open neighborhoods $V_{0} \subset \mathbb{R}^{n}$ of a and $W_{0} \subset \mathbb{R}^{k}$ of b and a smooth function $F: V_{0} \rightarrow W_{0}$ such that for all $x \in V_{0}$ and $y \in W_{0}$, $\phi(x, y)=c$ iff $y=F(x)$.

Proof. First we define a smooth function for which to apply the inverse function to. Let $\psi: U \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{k}$ be defined by

$$
\psi(x, y)=(x, \phi(x, y))
$$

This is smooth, and

$$
[D \psi(a, b)]=\left[\begin{array}{cc}
I_{n} & 0 \\
\frac{\partial \phi^{i}}{\partial x^{j}}(a, b) & \frac{\partial \phi^{i}}{\partial y^{j}}(a, b)
\end{array}\right]
$$

is nonsingular by our assumptions. Therefore, by the inverse function theorem, there are connected open neighborhoods $U_{0} \subset U$ of (a, b) and $Y_{0} \subset \mathbb{R}^{n} \times \mathbb{R}^{k}$ of $\psi(a, b)=(a, c)$ such that $\psi: U_{0} \rightarrow Y_{0}$ is a diffeomorphism.

Next, we define V_{0} and W_{0}. Since U_{0} is an open subset of $\mathbb{R}^{n} \times \mathbb{R}^{k}$, there are open sets $V \subset \mathbb{R}^{n}$ and $W_{0} \subset \mathbb{R}^{k}$ such that $(a, b) \in V \times W_{0} \subset U_{0}$. Then $\psi(a, b)=$ $(a, c) \in \psi\left(V \times W_{0}\right) \subset Y_{0}$ and $\psi: V \times W_{0} \rightarrow \psi\left(V \times W_{0}\right)$ is a diffeomorphism. Let $V_{0}=\left\{x \in V:(x, c) \in \psi\left(V \times W_{0}\right)\right\}$, so that $a \in V_{0} \subset V$ is open and $b \in W_{0}$ is open.

Now, we define $F: V_{0} \rightarrow W_{0}$. Since $\psi^{-1}: \psi\left(V \times W_{0}\right) \rightarrow V \times W_{0}$, is smooth, there are smooth functions $A: \psi\left(V \times W_{0}\right) \rightarrow V$ and $B: \psi\left(V \times W_{0}\right) \rightarrow W_{0}$ such that $\psi^{-1}(x, y)=(A(x, y), B(x, y))$ for all $(x, y) \in \psi\left(V \times W_{0}\right)$. Let $F: V_{0} \rightarrow W_{0}$ be defined by $F(x)=B(x, c)$ for all $x \in V_{0}$.

Now before we show that F has all of the desired properties, we make one observation. Let $(x, y) \in \psi\left(V \times W_{0}\right)$. Then

$$
\begin{aligned}
(x, y) & =\psi\left(\psi^{-1}(x, y)\right) \\
& =\psi(A(x, y), B(x, y)) \\
& =(A(x, y), \phi(A(x, y), B(x, y)) .
\end{aligned}
$$

Comparing the first coordinates shows us that

$$
A(x, y)=x
$$

for all $(x, y) \in \psi\left(V \times W_{0}\right)$.
Now we show that F has all of the desired properties. First, since B is smooth, F is smooth. Next, if $x \in V_{0}$ and $y \in W_{0}$ is such that $\phi(x, y)=c$, then $\psi(x, y)=(x, c) \in \psi\left(V \times W_{0}\right)$, so that $A(x, c)=x$. Therefore,

$$
(x, y)=\psi^{-1}(x, c)=(A(x, c), B(x, c))=(x, F(x)) .
$$

Hence $y=F(x)$
Conversely, if $x \in V_{0}$ and $y \in W_{0}$ is such that $y=F(x)$, then $(x, c) \in$ $\psi\left(V \times W_{0}\right)$, so that $A(x, c)=x$. Therefore,

$$
\begin{aligned}
(x, c) & =\psi\left(\psi^{-1}(x, c)\right) \\
& =(A(x, c), \phi(A(x, c), B(x, c)) \\
& =(x, \phi(x, F(x))) \\
& =(x, \phi(x, y)) .
\end{aligned}
$$

Comparing the second coordinates then implies that $\phi(x, y)=c$. This completes the proof.

