Multivariable Calculus Notes

Contents

orem

1	Total Derivatives	1
2	Partial Derivatives	7
3	Continuously Differentiable Functions	9
4	Higher Order Derivatives	11
5	Diffeomorphisms	13
6	Smooth Real-Valued Functions	14
7	Extension to Non-Open Subsets	17
8	Directional Derivatives	18
9	The Inverse Function Theorem and the Implicit Function The-	

1 Total Derivatives

Definition 1. Let *V* and *W* be finite dimensional normed vector spaces. Let *U* be an open subset of *V*. We say that a function $F: U \to W$ is **differentiable** at $a \in U$ if there is a linear map $L: V \to W$ such that

$$\lim_{v \to 0} \frac{|F(a+v) - F(a) - Lv|}{|v|} = 0.$$
 (1)

 $\mathbf{18}$

Remark 1. Equivalently, $F:U\to W$ is differentiable at $a\in U$ iff there is a linear map $L:V\to W$ such that

$$\lim_{v \to a} \frac{|F(v) - F(a) - L(v - a)|}{|v - a|} = 0.$$

Proposition 1. If $F : U \to W$ is differentiable at $a \in U$, then the linear map L satisfying equation (1) is unique.

Proof. Let L and L' be two such linear maps. Then L0 = 0 = L'0 by linearity. Now let $v \in V - \{0\}$, and let $\epsilon > 0$. Then there is $\delta > 0$ such that when $0 < |u| < \delta$,

$$\frac{|F(a+u) - F(a) - Lu|}{|u|} < \epsilon$$

and

$$\frac{|F(a+u) - F(a) - L'u|}{|u|} < \epsilon$$

Let $t = \frac{\delta}{2|v|}$ and let u = tv. Then

$$0 < |u| = t|v| = \frac{\delta}{2} < \delta.$$

Therefore

$$|Lv - L'v| \le \frac{|u|}{t} \left(\frac{|Lu - F(a+u) + F(a)|}{|u|} + \frac{|F(a+u) - F(a) - L'u|}{|u|} \right)$$

< $2\epsilon |v|$

for all $\epsilon > 0$. Hence Lv = L'v for all $v \in V$, so L is unique.

Definition 2. If F is differentiable at a, the linear map L satisfying equation (1) is denoted by DF(a) and is called the **total derivative of** F at a.

Remark 2. Equation (1) can be rewritten as

$$F(a+v) = F(a) + DF(a)v + R_F(v)$$
⁽²⁾

where $R_F(v) = F(a+v) - F(a) - DF(a)v$ satisfies $|R(v)|/|v| \to 0$ as $v \to 0$.

Proposition 2. Let V, W, and X be finite dimensional vector spaces. Let $U \subset V$ be open. Let $a \in U$. Let $F, G : U \to W$, and let $f, g : U \to \mathbb{R}$. Then

- 1. If F is differentiable at a, then F is continuous at a.
- 2. If F is constant, then F is differentiable at a and DF(a) = 0.
- 3. If F and G are differentiable at a, and if $c \in \mathbb{R}$, then cF+G is differentiable at a and

$$D(cF+G)(a) = cDF(a) + DG(a)$$

4. If f and g are differentiable at a, then fg is differentiable at a, and

$$D(fg)(a) = f(a)Dg(a) + g(a)Df(a).$$

5. If f and g are differentiable at a, and if $g(a) \neq 0$, then f/g is differentiable at a and g(a) Df(a) = f(a) Dg(a)

$$D(f/g)(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{g(a)^2}$$

- 6. If $T: V \to W$ is linear, then T is differentiable at every $v \in V$, with DT(v) = T.
- 7. If $B: V \times W \to X$ is bilinear, then B is differentiable at every $(v, w) \in V \times W$, and

$$DB(v, w)(x, y) = B(v, y) + B(x, w).$$

Proof. 1. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a + v \in U$ for all $v \in N$. Then for any $v \in N - \{0\}$,

$$|F(a+v) - F(a)| = \frac{|F(a+v) - F(a) - DF(a)v|}{|v|} |v| + |DF(a)v|$$

$$\leq |v|(|R(v)|/|v| + |DF(a)|)$$

Since $|R(v)|/|v| + |DF(a)| \to |DF(a)|$ and $|v| \to 0$ as $v \to 0$, we conclude that F is continuous at a.

2. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a + v \in U$ for all $v \in N$. Then for any $v \in N - \{0\}$,

$$\frac{|F(a+v) - F(a) - 0v|}{|v|} = 0.$$

Therefore $0: V \to W$ satisfies the differentiability condition, so F is differentiable at a. By uniqueness, DF(a) = 0.

3. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a + v \in U$ for all $v \in N$. Then the conclusion follows from the fact that

$$\frac{N(v)|}{|v|} \le c \frac{|R_F(v)|}{|v|} + \frac{|R_G(v)|}{|v|}$$

for all $v \in N - \{0\}$, where

$$N(v) = (cF + G)(a + v) - (cF + G)(a) - cDF(a)v - DG(a)v,$$

$$R_F(v) = F(a+v) - F(a) - DF(a)v$$
, and $R_G(v) = G(a+v) - G(a) - DG(a)v$.

4. Since $a \in U$ is open, there is a neighborhood N of 0 such that $a + v \in U$ for all $v \in N$. Let $v \in N - \{0\}$. We have that

$$f(a+v) = f(a) + Df(a)v + R_f(v)$$

where

$$R_f(v) = f(a+v) - f(a) - Df(a)v.$$

Similarly,

$$g(a+v) = g(a) + Dg(a)v + R_g(v)$$

where

$$R_g(v) = g(a+v) - g(a) - Dg(a)v.$$

Hence

$$(fg)(a + v) = (fg)(a) + f(a)Dg(a)v + g(a)Df(a)v + R(v)$$

where

$$\begin{split} R(v) &= f(a)R_g(v) + Df(a)vDg(a)v + Df(a)vR_g(v) + \\ R_f(v)g(a) + R_f(v)Dg(a)v + R_f(v)R_g(v). \end{split}$$

We have that $|R_g(v)|/|v| \to 0$ and $|R_f(v)|/|v| \to 0$ as $v \to 0$. We also have that $|R_g(v)| \to 0$ and

$$|Df(a)vDg(a)v|/|v| \le |Df(a)||Dg(a)||v| \to 0$$

as $v \to 0.$ From this, we see that $|R(v)|/|v| \to 0$ as $v \to 0.$ Since we also have that

$$R(v) = (fg)(a+v) - (fg)(a) - f(a)Dg(a)v - g(a)Df(a)v,$$

this proves the result.

5. Since $a \in U \subset V$ is open, since $g(a) \neq 0$, and since g is continuous at a, there is an open neighborhood $N \subset V$ of 0 such that $a+v \in U$ for all $v \in N$ and $g(a+v) \neq 0$ for all $v \in N$. Then $a+N = \{a+v : v \in N\} \subset U$ is an open neighborhood of a. Let $h: a+N \to \mathbb{R}$ be defined by h(u) = 1/g(u) for all $u \in a+N$. We will show that h is differentiable at a and

$$Dh(a) = -\frac{1}{g(a)^2} Dg(a).$$

Indeed, we have that for any $v \in N - \{0\}$,

$$h(a + v) - h(a) = \frac{1}{g(a) - g(a + v)} = \frac{g(a) - g(a + v)}{g(a)g(a + v)} = -\frac{1}{g(a)g(a + v)}(Dg(a)v + R_g(v))$$

Then

$$h(a + v) - h(a) + \frac{1}{g(a)^2} Dg(a)v = R(v)$$

where

$$R(v) = \left(\frac{1}{g(a)^2} - \frac{1}{g(a)g(a+v)}\right) Dg(a)v - \frac{1}{g(a)g(a+v)} R_g(v).$$

Since

$$|Dg(a)v|/|v| \le |Dg(a)|$$

and since $|R_g(v)|/|v| \to 0$ and

$$\left|\frac{1}{g(a)^2} - \frac{1}{g(a)g(a+v)}\right| \to 0$$

as $v \to 0$, we conclude that

$$\frac{\left|h(a+v) - h(a) + \frac{1}{g(a)^2} Dg(a)v\right|}{|v|} = \frac{|R(v)|}{|v|} \to 0$$

as $v \to 0$. Hence h is differentiable at a and

$$Dh(a) = -\frac{1}{g(a)^2} Dg(a).$$

Now since f/g = fh on a + N, we have that f/g is differentiable at a and

$$D(f/g)(a) = \frac{1}{g(a)} Df(a) - \frac{f(a)}{g(a)^2} Dg(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{g(a)^2}$$

6. For any $v \in V$, any $v' \in V - \{0\}$,

$$\frac{|T(v-v')-Tv-Tv'|}{|v'|}=0,$$

so the result follows immediately.

7. For any $v \in V$, $w \in W$, $(x, y) \in V \times W - \{(0, 0)\}$, we have that

$$\frac{|B(v+x,w+y) - B(v,w) - B(v,y) - B(x,w)|}{|(x,y)|} = \frac{|B(x,y)|}{|(x,y)|}.$$

We will show that $|B(x,y)|/|(x,y)| \to 0$ as $(x,y) \to 0$, which will prove the result.

First, suppose that $\{e_1, \ldots, e_n\}$ is a basis for V and $\{f_1, \ldots, f_m\}$ is a basis for W. Suppose that V and W are endowed with the ℓ^{∞} -norms with respect to these bases, ie

$$|v| = |\sum_i \alpha_i e_i| = \max_i |\alpha_i|$$

for all $v = \sum_i \alpha_i e_i$ in V and

$$|w| = |\sum_{j} \beta_j f_j| = \max_{j} |\beta_j|$$

for all $w = \sum_j \beta_j f_j \in W$. Also suppose that we have that ℓ^{∞} product norm on $V \times W$, ie $|(v, w)| = \max\{|v|, |w|\}$ for all $v \in V$, $w \in W$. Let x =

 $\sum_i x_i e_i$ and $y = \sum_j y_j f_j$ be arbitrary such that $(x,y) \in V \times W - \{(0,0)\}.$ Then we have that

$$B(x,y) = \sum_{i,j} x_i y_j B(e_i, f_j),$$

so that

$$|B(x,y)|/|(x,y)| \le nm \max_{i,j} |B(e_i,f_j)| \frac{|x||y|}{\max\{|x|,|y|\}} \le nm \max_{i,j} |B(e_i,f_j)| \min\{|x|,|y|\}$$

and the last quantity converges to 0 as (x, y) converges to (0, 0). This proves the result when V, W, and $V \times W$ all have the norms that we specified. Now if V, W, and $V \times W$ all have arbitrary norms on them, since all norms on a finite dimensional vector space are equivalent, the general result follows from what we just showed. In other words,

$$|B(x,y)|/|(x,y)| \to 0$$

as $(x, y) \to (0, 0)$ independent of choice of norms for $V, W, V \times W$, and X. This completes the proof.

Proposition 3 (Chain Rule for Total Derivatives). Let V, W, and X be finite dimensional vector spaces. Let $U \subset V$ and $\tilde{U} \subset W$ be open subsets. Let $F : U \to \tilde{U}$ and $G : \tilde{U} \to X$. If F is differentiable at $a \in U$ and G is differentiable at $F(a) \in \tilde{U}$, then $G \circ F$ is differentiable at a with

$$D(G \circ F)(a) = DG(F(a)) \circ DF(a).$$

Proof. Since $F(a) \in \tilde{U}$ is open, there is an open neighborhood $\tilde{N} \subset W$ of 0 such that $F(a) + w \in \tilde{U}$ for all $w \in \tilde{N}$. Hence $F(a) + \tilde{N} = \{F(a) + w : w \in N\} \subset \tilde{U}$ is an open neighborhood of F(a). Since F is continuous at a and $a \in U$ is open, there is an open neighborhood $N \subset V$ of 0 such that $a + v \in U$ and $F(a + v) \in F(a) + \tilde{N}$ for all $v \in N$. Then for any $v \in N - \{0\}$, we have that

$$w(v) = F(a+v) - F(a) = DF(a)v + R_F(v) \in N.$$

Therefore, for $v \in N - \{0\}$ such that $w(v) \neq 0$,

$$G(F(a+v)) - G(F(a)) = G(F(a) + w(v)) - G(F(a))$$

= $DG(F(a))w(v) + R_G(w(v))$
= $DG(F(a))DF(a)v + DG(F(a))R_F(v) + R_G(w(v)).$

Hence

$$G(F(a+v)) - G(F(a)) - DG(F(a))DF(a)v = R(v),$$

where

$$R(v) = DG(F(a))R_F(v) + R_G(w(v)).$$

We have that $|R_F(v)|/|v| \to 0$ as $v \to 0$. We also have that

$$\frac{|R_G(w(v))|}{|v|} = \frac{|R_G(w(v))|}{|v|(|DF(a)| + |R_F(v)|/|v|)} \left(|DF(a)| + \frac{|R_F(v)|}{|v|} \right)$$
$$\leq \frac{|R_G(w(v))|}{|DF(a)v + R_F(v)|} \left(|DF(a)| + \frac{|R_F(v)|}{|v|} \right)$$
$$= \frac{|R_G(w(v))|}{|w(v)|} \left(|DF(a)| + \frac{|R_F(v)|}{|v|} \right).$$

Now since $w(v) \to 0$ as $v \to 0$, and since $|R_G(w)|/|w| \to 0$ as $w \to 0$, the inequality above shows that

$$\frac{|G(F(a+v)) - G(F(a)) - DG(F(a))DF(a)v|}{|v|} = \frac{|R(v)|}{|v|} \to 0$$

as $v \to 0$. This completes the proof.

Definition 3. Let $U \subset \mathbb{R}^n$ be open, and let $f : U \to \mathbb{R}$. Let e_1, \ldots, e_n be the standard basis vectors of \mathbb{R}^n . For any $a \in U$ and any $j \in \{1, \ldots, n\}$, the *j*th partial derivative of f at a is

$$\frac{\partial f}{\partial x^j}(a) = \lim_{h \to 0} \frac{f(a + he_j) - f(a)}{h}$$

if the limit exists.

Remark 3. We can use any symbol in place of x in the notation above.

Definition 4. Let $U \subset \mathbb{R}^n$ be open, and let $F : U \to \mathbb{R}^m$. The partial derivatives of F are the partial derivatives of the **component functions** $F^i : U \to \mathbb{R}$ where $F(x) = (F^1(x), \ldots, F^m(x))$ for all $x \in U$. The matrix $(\partial F^i / \partial x^j)$ of partial derivatives is called the **Jacobian matrix of** F, and its determinant is the **Jacobian determinant of** F.

Proposition 4. Let $U \subset \mathbb{R}^n$ be open, and let $F : U \to \mathbb{R}^m$. If F is differentiable, then each of its partial derivatives exist at all points of U, and for each $a \in U$, the matrix representing DF(a) with respect to the standard bases of \mathbb{R}^n and \mathbb{R}^m is the Jacobian matrix $(\partial F^i/\partial x^j(a))$.

Proof. Let $a \in U$ and let $j \in \{1, \ldots, n\}$. Since U is open, there is an $\epsilon > 0$ such that when $|t| < \epsilon$, $a + te_j \in U$. Then for all $0 < |t| < \epsilon$,

$$F(a + te_j) - F(a) = tDF(a)e_j + R_F(te_j).$$

Then for each i,

$$\frac{F^{i}(a+te_{j})-F^{i}(a)}{t} = (DF(a))^{i}_{j} + \frac{R_{F}(te_{j})^{i}}{t}.$$
(3)

Observe that for any norm $|\cdot|$ on \mathbb{R}^m , there is a constant C > 0 such that for all $x \in \mathbb{R}^m$, all $i \in \{1, \ldots, m\}$, $|x_i| \leq C|x|$. Indeed, this holds for C = 1with the ℓ^{∞} norm on \mathbb{R}^m , and since all norms are equivalent on \mathbb{R}^m , the general result follows. In particular, there is a constant C > 0 such that

$$|R_F(te_j)^i|/|t| \le C|R_F(te_j)|/|te_j|$$

for all $0 < |t| < \epsilon$.

Then since

$$\frac{|R_F(te_j)|}{|te_j|} \to 0$$

as $t \to 0$, taking the limit as $t \to 0$ in equation (3) implies that

$$\frac{\partial F^i}{\partial x^j}(a) = (DF(a))^i_j$$

for all i, j, and a as desired.

Proposition 5. Let $U \subset \mathbb{R}^n$ be open, and let $F : U \to \mathbb{R}^m$. Then F is differentiable iff each component function $F^i : U \to \mathbb{R}$ is differentiable, where the F^i satisfy $F(x) = (F^1(x), \ldots, F^n(x))$ for all $x \in U$.

Proof. If F is differentiable, then for each $a \in U$, the linear map $DF(a) : \mathbb{R}^n \to \mathbb{R}^m$ exists, and its standard matrix is given by

$$(DF(a))_j^i = \frac{\partial F^i}{\partial x^j}(a).$$

Then since $a \in U$ is open, there is an $\epsilon > 0$ such that $a + v \in U$ for all $|v| < \epsilon$. Then for each i and each $0 < |v| < \epsilon$, we have that

$$F^{i}(a+v) - F^{i}(a) = \sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a)v^{j} + R_{F}(v)^{i}.$$

Then the linear map $v \mapsto \sum_j \partial F^i / \partial x^j(a) v^j$ from \mathbb{R}^n to \mathbb{R} satisfies

$$F^{i}(a+v) - F^{i}(a) - \sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a)v^{j} = R_{F}(v)^{i}$$

$$\tag{4}$$

for all $0<|v|<\epsilon.$ From equivalence of norms on $\mathbb{R}^m,$ there is a constant C>0 such that

$$|R_F(v)^i|/|v| \le C|R_F(v)|/|v| \to 0$$

as $v \to 0$. Therefore equation (4) implies that each F^i is differentiable at each $a \in U$.

Conversely, if each F^i is differentiable, then for each $a \in U$, the linear map $DF^i(a) : \mathbb{R}^n \to \mathbb{R}$ exists and its standard matrix is given by

$$(DF^{i}(a))_{j} = \frac{\partial F^{i}}{\partial x^{j}}(a).$$

Then for $a \in U$ and for v sufficiently small where $a + v \in U$,

$$F^{i}(a+v) - F^{i}(a) - \sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a)v^{j} = R_{F^{i}}(v)$$

for each *i*, where $|R_{F^i}(v)|/|v| \to 0$ as $v \to 0$. For each *v* sufficiently small, let R(v) be the vector in \mathbb{R}^m given by

$$R(v)^i = R_{F^i}(v).$$

Also, for each $a \in U$, let $L(a) : \mathbb{R}^n \to \mathbb{R}^m$ be the linear map given by

$$(L(a)v)^{i} = \sum_{j} \frac{\partial F^{i}}{\partial x^{j}}(a)v^{j}$$

for all i. Then we have that for all $a \in U$, for all v sufficiently small,

$$F(a+v) - F(a) - L(a)v = R(v).$$

Observe that $|R(v)|/|v| \to 0$ as $v \to 0$ when \mathbb{R}^m is given the ℓ^1 norm. Since all norms on \mathbb{R}^m are equivalent, we then conclude that $|R(v)|/|v| \to 0$ independent of choice of norms on \mathbb{R}^m and \mathbb{R}^n . Hence F is differentiable at all $a \in U$. \Box

Remark 4. The proof of the previous proposition also shows that

$$(DF(a))_j^i = (DF^i(a))_j,$$

that is, the *i*-th row of the standard matrix of DF(a) corresponds to the standard matrix of $DF^{i}(a)$, provided that either F is differentiable at a or all F^{i} are differentiable at a.

3 Continuously Differentiable Functions

Definition 5. Let $U \subset \mathbb{R}^n$ be open. If $F : U \to \mathbb{R}^m$ is a function where each of its partial derivatives exist at all points of U, and each of the functions $\partial F^i / \partial x^j : U \to \mathbb{R}$ so defined are continuous, then F is said to be of class C^1 or continuously differentiable.

Remark 5. It follows immediately from the definitions that a function $F: U \to \mathbb{R}^m$ defined on an open subset U of \mathbb{R}^n is C^1 iff each $F^i: U \to \mathbb{R}$ is C^1 .

Proposition 6. Let $U \subset \mathbb{R}^n$ be open. If $F : U \to \mathbb{R}^m$ is C^1 , then F is differentiable at each point of U.

Proof. First suppose that m = 1 and n = 2. Let $a = (a^1, a^2) \in U$. Since U is open, there is an $\epsilon > 0$ such that when $v \in B(0, \epsilon) - \{0\}$, $a + v \in U$. Given $v = (v_1, v_2)$ such that $0 < |v| < \epsilon$, we have that

$$F(a+v) - F(a) = [F(a^{1}+v^{1}, a^{2}+v^{2}) - F(a^{1}, a^{2}+v^{2})] + [F(a^{1}, a^{2}+v^{2}) - F(a^{1}, a^{2})].$$

Since F is C^1 , we can apply the mean value theorem twice to conclude that there is $w^1(v)$ between a^1 and $a^1 + v^1$ and $w^2(v)$ between a^2 and $a^2 + v^2$ such that

$$F(a+v) - F(a) = \frac{\partial F}{\partial x^1} (w^1(v), a^2 + v^2) v^1 + \frac{\partial F}{\partial x^2} (a^1, w^2(v)) v^2$$

This defines functions $w^1, w^2 : B(0, \epsilon) - \{0\} \to \mathbb{R}$ such that $w^1(v) \to a^1$ and $w^2(v) \to a^2$ as $v \to 0$. Now let

$$\begin{aligned} R(v) &= \left(\frac{\partial F}{\partial x^1}(w^1(v), a^2 + v^2) - \frac{\partial F}{\partial x^1}(a^1, a^2)\right)v^1 + \\ &\left(\frac{\partial F}{\partial x^2}(a^1, w^2(v)) - \frac{\partial F}{\partial x^2}(a^1, a^2)\right)v^2, \end{aligned}$$

so that

$$F(a+v) - F(a) - \frac{\partial F}{\partial x^1}(a)v^1 - \frac{\partial F}{\partial x^2}(a)v^2 = R(v).$$

From the equivalence of norms on \mathbb{R}^n , we have that there is a C > 0 such that

$$\begin{aligned} \frac{|R(v)|}{|v|} &\leq C \left| \frac{\partial F}{\partial x^1} (w^1(v), a^2 + v^2) - \frac{\partial F}{\partial x^1} (a^1, a^2) \right| + \\ & C \left| \frac{\partial F}{\partial x^2} (a^1, w^2(v)) - \frac{\partial F}{\partial x^2} (a^1, a^2) \right| \end{aligned}$$

and, by continuity of the partial derivatives, both terms on the right converge to 0 as $v \to 0$. Hence $|R(v)|/|v| \to 0$ as $v \to 0$, so this shows that F is differentiable. Therefore the result holds for m = 1 and n = 2.

The case for m = 1 and general n is a straightforward generalization of the argument we just gave, just with more notation: write F(a + v) - F(a)as a telescoping sum and apply the mean value theorem to each of the relevant pieces. The case for arbitrary m and n proceeds as follows: If F is C^1 , then each of the component functions $F^i: U \to \mathbb{R}$ are C^1 , so we can apply our m = 1 case to each component function to conclude that each $F^i: U \to \mathbb{R}$ is differentiable. But then that implies that $F: U \to \mathbb{R}^m$ is differentiable. This completes the proof. \Box

Remark 6. If U is an open subset of \mathbb{R}^n and $F: U \to \mathbb{R}^m$ is C^1 , then since the matrix representing DF has entries given by the partial derivatives of F, we have that $DF: U \to L(\mathbb{R}^n, \mathbb{R}^m) \cong \mathbb{R}^{nm}$ is continuous.

4 Higher Order Derivatives

Definition 6. Let $U \subset \mathbb{R}^n$ be open and $F : U \to \mathbb{R}^m$. If F is of class C^1 , then we can differentiate the partial derivatives to obtain **second-order partial derivatives**

$$\frac{\partial^2 F^i}{\partial x^k \partial x^j} = \frac{\partial}{\partial x^k} \left(\frac{\partial F^i}{\partial x^j} \right)$$

whenever they exist. Continuing in this way, the **partial derivatives of** F of order k are the partial derivatives of those of order k - 1 whenever they exist.

Definition 7. Let $U \subset \mathbb{R}^n$ be open and let $F : U \to \mathbb{R}^m$. We say that F is of class C^k or k times continuously differentiable if all the partial derivatives of F of order less than or equal to k exist and are continuous functions on U. In particular, C^0 is the class of continuous functions.

Remark 7. Let $U \subset \mathbb{R}^n$ be open and $F: U \to \mathbb{R}^m$. Then F is C^k iff for all $x \in U$, there is an open neighborhood N of x such that $F: N \cap U \to \mathbb{R}^m$ is C^k . Remark 8. If a function is C^{k+1} , then it is also C^k . Furthermore, a function is C^{k+1} iff its partial derivatives are C^k , and a function is C^k iff all of its component functions are C^k .

Definition 8. A function that is class C^k for all $k \ge 0$ is said to be class C^{∞} , smooth, or infinitely differentiable.

Remark 9. A function is smooth iff its partial derivatives are smooth iff its partial derivatives of all orders are smooth iff all of its component functions are smooth.

Proposition 7. Let $U \subset \mathbb{R}^n$ be open, and let $F : U \to \mathbb{R}^m$ be C^2 . Then the mixed second-order partial derivatives of F do not depend on the order of differentiation:

$$\frac{\partial^2 F^i}{\partial x^j \partial x^k} = \frac{\partial^2 F^i}{\partial x^k \partial x^j}$$

for all i, j, and k.

Proof. Let $a \in U$. Since U is open, there is $\epsilon > 0$ such that when $v \in B^n(0, \epsilon)$, $a + v \in U$. Let $\Delta : B^1(0, \epsilon/2) \to \mathbb{R}$ be defined by

$$\Delta(s) = F^i(a + se_j + se_k) - F^i(a + se_j) - F(a + se_k) + F(a).$$

Let $G_s: B^1(0, \epsilon/2) \to \mathbb{R}$ be defined by

$$G_s(t) = F^i(a + se_j + te_k) - F^i(a + te_k)$$

for each $s \in B^1(0, \epsilon/2)$. Then each G_s is C^1 , and

$$\Delta(s) = G_s(s) - G_s(0)$$

for all $s \in B^1(0, \epsilon/2)$. By the mean value theorem, there is $\delta : B^1(0, \epsilon/2) \to \mathbb{R}$ such that $0 < |\delta(s)| < |s|$ for all $s \in B^1(0, \epsilon/2)$ and

$$\frac{\Delta(s)}{s} = G'_s(\delta(s)) = \frac{\partial F^i}{\partial x^k} (a + se_j + \delta(s)e_k) - \frac{\partial F}{\partial x^k} (a + \delta(s)e_k)$$
(5)

for all $s \in B^1(0, \epsilon/2) - \{0\}$. Since $\partial F^i / \partial x^k$ is C^1 , and hence differentiable, we have that

$$\frac{\partial F^{i}}{\partial x^{k}}(a+se_{j}+\delta(s)e_{k}) = \frac{\partial F^{i}}{\partial x^{k}}(a) + \frac{\partial^{2}F^{i}}{\partial x^{j}\partial x^{k}}(a)s + \frac{\partial^{2}F^{i}}{\partial x^{k}\partial x^{k}}(a)\delta(s) + R(se_{j}+\delta(s)e_{k})$$
 and

$$\frac{\partial F^i}{\partial x^k}(a+\delta(s)e_k) = \frac{\partial F^i}{\partial x^k}(a) + \frac{\partial^2 F^i}{\partial x^k \partial x^k}(a)\delta(s) + R(\delta(s)e_k)$$

for all $s \in B^1(0, \epsilon/2)$. Substituting our last two equations into equation (5) implies that

$$\frac{\Delta(s)}{s^2} - \frac{\partial^2 F^i}{\partial x^j \partial x^k}(a) = \frac{R(se_j + \delta(s)e_k)}{s} - \frac{R(\delta(s)e_k)}{s} \tag{6}$$

for all $s \in B^1(0, \epsilon/2) - \{0\}$.

Now since $|\delta(s)| \leq |s|$ for each s, we have that

$$\frac{|R(\delta(s)e_k)|}{|s|} \le \frac{|R(\delta(s)e_k)|}{|\delta(s)e_k|} \to 0 \tag{7}$$

as $s \to 0$. If we give \mathbb{R}^n the ℓ^{∞} norm, we also have that $|se_j + \delta(s)e_k|_{\infty} \leq |s|$. Therefore, by equivalence of norms, for the given arbitrary norm on \mathbb{R}^n there is a constant C > 0 such that

$$|se_j + \delta(s)e_k| \le C|s$$

for all s. Therefore

$$\frac{|R(se_j + \delta(s)e_k)|}{|s|} \le C \frac{|R(se_j + \delta(s)e_k)|}{|se_j + \delta(s)e_k|} \to 0$$
(8)

as $s \to 0$. Equation (6) and inequalities (7) and (8) then imply that

$$\frac{\Delta(s)}{s^2} \to \frac{\partial^2 F^i}{\partial x^j \partial x^k}(a)$$

as $s \to 0$.

Now for each $s \in B^1(0, \epsilon/2)$, let $H_s : B^1(0, \epsilon/2) \to \mathbb{R}$ be defined by

$$H_s(t) = F^i(a + te_j + se_k) - F^i(a + te_j).$$

Then by following a similar argument as before, using H_s in place of G_s and $\partial F^i/\partial x^j$ in place of $\partial F^i/\partial x^k$, we can also show that

$$\frac{\Delta(s)}{s^2} \to \frac{\partial^2 F^i}{\partial x^k \partial x^j}(a)$$

as $s \to 0$. Hence the second order mixed partials agree at all $a \in U$, which is what we wanted to show.

Corollary 1. If $U \subset \mathbb{R}^n$ is open and $F : U \to \mathbb{R}^m$ is smooth, then the mixed partials of order k + 2 do not depend on the order of differentiation for all k:

$$\frac{\partial^{k+2}F^i}{\partial x^{j_{k+2}}\cdots\partial x^{j_1}} = \frac{\partial^{k+2}F^i}{\partial x^{j_{\sigma(k+2)}}\cdots\partial x^{j_{\sigma(1)}}}$$

for all *i*, all *k*, all (k+2)-tuples (j_1, \ldots, j_{k+2}) where each $1 \leq j_l \leq n$, and all permutations $\sigma : \{1, \ldots, k+2\} \rightarrow \{1, \ldots, k+2\}$.

Proof. We prove this by induction. The base case k = 0 was proved by the last proposition. Suppose this holds for some $k \ge 0$. Now let (j_1, \ldots, j_{k+3}) be a (k+3)-tuple where each $1 \le j_l \le k+3$, and let $\sigma : \{1, \ldots, k+3\} \rightarrow \{1, \ldots, k+3\}$ be a permutation. If $\sigma(k+3) = k+3$, then $\sigma : \{1, \ldots, k+2\} \rightarrow \{1, \ldots, k+2\}$ is a permutation. Therefore, for any i, we have that

$$\frac{\partial^{k+3}F^{i}}{\partial x^{j_{\sigma(k+3)}}\cdots\partial x^{j_{\sigma(1)}}} = \frac{\partial}{\partial x^{j_{k+3}}} \left(\frac{\partial^{k+2}F^{i}}{\partial x^{j_{\sigma(k+2)}}\cdots\partial x^{j_{\sigma(1)}}}\right)$$
$$= \frac{\partial}{\partial x^{j_{k+3}}} \left(\frac{\partial^{k+2}F^{i}}{\partial x^{j_{k+2}}\cdots\partial x^{j_{1}}}\right)$$
$$= \frac{\partial^{k+3}F^{i}}{\partial x^{j_{k+3}}\cdots\partial x^{j_{1}}}.$$

If instead $k+3 \in \sigma(\{1, \ldots, k+2\})$, then we also have that $\sigma(k+3) \in \{1, \ldots, k+2\}$. Let $l \in \{1, \ldots, k+2\}$ be such that $\sigma(l) = k+3$. For convenience, assume that 1 < l < k+2. Then for all i,

$$\begin{aligned} \frac{\partial^{k+3}F^{i}}{\partial x^{j_{\sigma}(k+3)}\cdots\partial x^{j_{\sigma}(1)}} &= \frac{\partial}{\partial x^{j_{\sigma}(k+3)}} \left(\frac{\partial^{k+2}F^{i}}{\partial x^{j_{\sigma}(k+2)}\cdots\partial x^{j_{\sigma}(1)}} \right) \\ &= \frac{\partial}{\partial x^{j_{\sigma}(k+3)}} \left(\frac{\partial^{k+2}F^{i}}{\partial x^{j_{\sigma}(k)}\partial x^{j_{\sigma}(k+2)}\cdots\partial x^{j_{\sigma}(1)}} \right) \\ &= \frac{\partial^{2}}{\partial x^{j_{\sigma}(k+3)}\partial x^{j_{\sigma}(1)}} \left(\frac{\partial^{k+1}F^{i}}{\partial x^{j_{\sigma}(k+2)}\cdots\partial x^{j_{\sigma}(1)}} \right) \\ &= \frac{\partial}{\partial x^{j_{\sigma}(k)}\partial x^{j_{\sigma}(k+3)}} \left(\frac{\partial^{k+2}F^{i}}{\partial x^{j_{\sigma}(k+2)}\cdots\partial x^{j_{\sigma}(1)}} \right) \\ &= \frac{\partial^{k+3}F^{i}}{\partial x^{j_{\sigma}(k+3)}\cdots\partial x^{j_{\sigma}(1)}} \end{aligned}$$

The case when l = 1 or l = k + 2 follows almost exactly as above, just with some slight modifications to the notation. Therefore the proof is finished by induction.

5 Diffeomorphisms

Definition 9. If U and V are open subsets of Euclidean space, a function $F: U \to V$ is a **diffeomorphism** if it is smooth, bijective, and its inverse is

 smooth .

Remark 10. Every diffeomorphism between open subsets of Euclidean space is a homeomorphism.

Proposition 8. Let $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$, be open, and let $F : U \to V$ be a diffeomorphism. Then m = n, and for each $a \in U$, the total derivative DF(a) is invertible with $DF(a)^{-1} = D(F^{-1})(F(a))$.

Proof. Since F is a diffeomorphism, in particular F and F^{-1} are both C^1 and hence differentiable, so DF(a) exists at each $a \in U$ and $D(F^{-1})(b)$ exists at each $b \in V$. Hence $F^{-1} \circ F = I_U$ is differentiable, and it is easy to verify that

$$DI_U(a) = I_{\mathbb{R}^n},$$

 \mathbf{SO}

$$I_{\mathbb{R}^n} = D(F^{-1} \circ F)(a) = D(F^{-1})(F(a)) \circ DF(a)$$

Similarly, since $F \circ F^{-1} = I_V$, we also have that

$$I_{\mathbb{R}^m} = DF(a) \circ D(F^{-1})(F(a)).$$

Hence DF(a) is an invertible linear map from \mathbb{R}^n to \mathbb{R}^m with inverse

$$DF(a)^{-1} = D(F^{-1})(F(a)),$$

and thus n = m.

6 Smooth Real-Valued Functions

Definition 10. If $U \subset \mathbb{R}^n$ is open, we let $C^k(U)$ denote the set of all C^k functions from U to \mathbb{R} , and we let $C^{\infty}(U)$ denote the set of all smooth functions from U to \mathbb{R} . Sums, scalar multiples, and products are all defined pointwise: given $f, g: U \to \mathbb{R}$ and $c \in \mathbb{R}$,

$$(f+g)(x) = f(x) + g(x),$$

 $(cf)(x) = c(f(x)),$
 $(fg)(x) = f(x)g(x).$

Proposition 9. Let $U \subset \mathbb{R}^n$ be open and let $f, g \in C^{\infty}(U)$ and $c \in \mathbb{R}$. Then f + g, cf, and fg all belong to $C^{\infty}(U)$. Thus $C^{\infty}(U)$ is a commutative ring and a commutative and associative algebra over \mathbb{R} .

Proof. From the definitions:

$$\frac{\partial (cf+g)}{\partial x^j}(x) = c \frac{\partial f}{\partial x^j}(x) + \frac{\partial g}{\partial x^j}(x)$$

for all j and all x. Thus cf + g is C^1 . In fact, this shows that taking partial derivatives is a linear operation. Now if cf + g is C^1, C^2, \ldots, C^k , and if an order k partial derivative of f + g is of the form

$$\frac{\partial^k (cf+g)}{\partial x^{j_k} \cdots \partial x^{j_1}}(x) = c \frac{\partial^k f}{\partial x^{j_k} \cdots \partial x^{j_1}}(x) + \frac{\partial^k g}{\partial x^{j_k} \cdots \partial x^{j_1}}(x),$$

then an order k + 1 partial derivative of cf + g is of the form

$$\frac{\partial^{k+1}(cf+g)}{\partial x^{j_{k+1}}\cdots\partial x^{j_1}}(x) = c\frac{\partial^{k+1}f}{\partial x^{j_{k+1}}\cdots\partial x^{j_1}}(x) + \frac{\partial^{k+1}g}{\partial x^{j_{k+1}}\cdots\partial x^{j_1}}(x)$$

which is continuous. Hence, by induction, cf + g is smooth. Taking c = 1 shows that f + g is smooth for all smooth f and g, and taking g = 0 shows that cf is smooth for all c and all smooth f.

Now

$$\begin{aligned} \frac{\partial (fg)}{\partial x^j}(x) &= \lim_{h \to 0} \frac{f(x+he_j)g(x+he_j) - f(x)g(x)}{h} \\ &= \lim_{h \to 0} \left(\frac{f(x+he_j) - f(x)}{h}g(x+he_j) + f(x)\frac{g(x+he_j) - g(x)}{h} \right) \\ &= \frac{\partial f}{\partial x^j}(x)g(x) + f(x)\frac{\partial g}{\partial x^j}(x) \end{aligned}$$

for all x and all j, so we conclude that fg is C^1 , and the partial derivatives of fg of order 1 are sums of products of partial derivatives of f and g of order at most 1.

Now suppose that fg is C^1, C^2, \ldots, C^k and the partial derivatives of fg of order k are sums of products of partial derivatives of f and g of order at most k. A particular term in a kth order partial derivative of fg is of the form

$$\frac{\partial^i f}{\partial x^{j_1} \cdots \partial x^{j_1}}(x) \frac{\partial^l g}{\partial x^{j_1} \cdots \partial x^{j_1}}(x)$$

where $0 \le i, l \le k$ (a partial derivative of order 0 is just f(x) or g(x)). Therefore, differentiating one of these terms gives us a term of the form

$$\frac{\partial^{i+1}f}{\partial x^{j}\partial x^{j_{i}}\cdots\partial x^{j_{1}}}(x)\frac{\partial^{l}g}{\partial x^{j_{1}}\cdots\partial x^{j_{1}}}(x)+\frac{\partial^{i}f}{\partial x^{j_{i}}\cdots\partial x^{j_{1}}}(x)\frac{\partial^{l+1}g}{\partial x^{j}\partial x^{j_{1}}\cdots\partial x^{j_{1}}}(x).$$

Since taking partial derivatives is a linear operation, differentiating an order k partial derivative of fg to obtain an order k+1 partial derivative of fg will give us some of terms like above, which shows that all order k+1 partial derivatives of fg are continuous. Hence, by induction, fg is smooth when f and g are smooth.

It immediately follows from the algebraic properties of \mathbb{R} that $C^{\infty}(U)$ is a commutative ring and a commutative and associative algebra over \mathbb{R} . The additive identity is the 0 function, the multiplicative identity is the constant 1 function, and the additive inverse of f is the function -f = (-1)f. \Box **Proposition 10.** Let $U \subset \mathbb{R}^n$ and $\tilde{U} \subset \mathbb{R}^m$ be open.

1. If $F: U \to \tilde{U}$ and $G: \tilde{U} \to \mathbb{R}^p$ are C^1 , then $G \circ F: U \to \mathbb{R}^p$ is C^1 , and its partial derivatives are given by

$$\frac{\partial (G^i \circ F)}{\partial x^j}(x) = \sum_{j=1}^m \frac{\partial G^i}{\partial y^k}(F(x)) \frac{\partial F^k}{\partial x^j}(x)$$

2. If F and G are smooth, then $G \circ F$ is smooth.

Proof. Since F and G are C^1 , they are differentiable, so $G \circ F$ is also differentiable, and for each $x \in U$, the matrix of $D(G \circ F)(x)$ is given by

$$\begin{split} \frac{\partial (G^i \circ F)}{\partial x^j}(x) &= [D(G \circ F)(x)]_j^i \\ &= [DG(F(x)) \circ DF(x)]_j^i \\ &= \sum_{k=1}^m [DG(F(x))]_k^i [DF(x)]_j^k \\ &= \sum_{k=1}^m \frac{\partial G^i}{\partial y^k} (F(x)) \frac{\partial F^k}{\partial x^j}(x). \end{split}$$

This shows that the partial derivatives of $G \circ F$ are sums of products of continuous functions, which is continuous. Hence $G \circ F$ is C^1 . Thus the composition of C^1 functions is C^1 .

Suppose now that the composition of C^k functions is C^k . If F and G are C^{k+1} , then let

$$H_l^i(y) = \frac{\partial G^i}{\partial y^l}(y)$$

for all i, l, and y. Then our computation above shows that

$$\frac{\partial G^i \circ F}{\partial x^j}(x) = \sum_{l=1}^n (H^i_l \circ F(x)) \frac{\partial F^k}{\partial x^j}(x)$$

for all i, j, and x. Since G is C^{k+1} , each H_l^i is C^k . Since F is C^{k+1} , and hence is also C^k , we have that $H_l^i \circ F$ is C^k and $\partial F^k / \partial x^j$ is also C^k . Therefore the partials of $G^i \circ F$ are sums of products of C^k functions, and hence is C^k . Therefore each $G^i \circ F$ is C^{k+1} , so $G \circ F$ is C^{k+1} whenever G and F are C^{k+1} . Hence, by induction, the composition of C^k functions is C^k for all k. From this, it follows that the composition of smooth functions is smooth.

Corollary 2. Let $U \subset \mathbb{R}^n$ be open, and let $f, g : U \to \mathbb{R}$. If f and g are smooth, and if g never vanishes on U, then f/g is smooth.

Proof. Let $h : \mathbb{R} - \{0\} \to \mathbb{R}$ be defined by h(x) = 1/x. Then for any $x \neq 0$,

$$h'(x) = -1/x^2$$

which is continuous. Therefore h is C^1 , and

$$h'(x) = \frac{(-1)^1 1!}{x^{1+1}}$$

for all $x \in \mathbb{R} - \{0\}$. Now suppose that h is C^k and

$$\frac{d^k h}{dx^k}(x) = \frac{(-1)^k k!}{x^{1+k}} = (-1)^k k! h(p(x))$$

for all $x \in \mathbb{R} - \{0\}$, where $p : \mathbb{R} \to \mathbb{R}$ is defined by $p(x) = x^{1+k}$. Then since $p'(x) = (k+1)x^k$, we have from the chain rule that

$$\frac{d^{k+1}h}{dx^{k+1}}(x) = \frac{(-1)^{k+1}(k+1)!}{x^{1+k+1}}$$

for all $x \in \mathbb{R} - \{0\}$. Hence, by induction, h is smooth. Since $f/g = f \cdot (h \circ g)$ on U, and since the multiplication and composition of smooth functions is smooth, we conclude that f/g is smooth.

7 Extension to Non-Open Subsets

Definition 11. If $A \subset \mathbb{R}^n$, then $F : A \to \mathbb{R}^m$ is smooth on A if for all $x \in A$, there is an open neighborhood $U \subset \mathbb{R}^n$ of x and a smooth function $\tilde{F} : U \to \mathbb{R}^m$ such that $\tilde{F} = F$ on $U \cap A$. We call such an \tilde{F} a smooth extension of F on an open neighborhood of x.

Remark 11. If $U \subset \mathbb{R}^n$ is open, then $F : U \to \mathbb{R}^m$ is smooth on U as above iff $F : U \to \mathbb{R}^m$ is smooth in the previously defined sense.

Remark 12. Let $A \subset \mathbb{R}^m$. If $F : A \to \mathbb{R}^n$ is smooth, then F is continuous.

Proposition 11. Let $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$, $F : A \to \mathbb{R}^m$, $G : B \to \mathbb{R}^p$, and $F(A) \subset B$. If F and G are smooth, then $G \circ F : A \to \mathbb{R}^p$ is smooth.

Proof. Let $x \in A$. Then there is an open neighborhood V of f(x) and a smooth function $\tilde{G} : V \to \mathbb{R}^p$ such that $\tilde{G} = G$ on $V \cap B$, and there is an open neighborhood U of x and a smooth function $\tilde{F} : U \to \mathbb{R}^m$ such that $\tilde{F} = F$ on $U \cap A$. Then $U \cap \tilde{F}^{-1}(V)$ is an open neighborhood of x and $\tilde{G} \circ \tilde{F} : U \cap \tilde{F}^{-1}(V) \to$ \mathbb{R}^p is a smooth function such that $\tilde{G} \circ \tilde{F} = G \circ F$ on $U \cap \tilde{F}^{-1}(V) \cap A$. Hence $G \circ F : A \to \mathbb{R}^p$ is smooth. \Box

Definition 12. Given $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$, a **diffeomorphism from** A to B is a smooth bijection $F : A \to B$ with smooth inverse.

Remark 13. Every diffeomorphism between subsets of Euclidean space is a homeomorphism.

8 Directional Derivatives

Definition 13. Let $f: U \to \mathbb{R}$ be a smooth real-valued function on an open subset U of \mathbb{R}^n . For each $v \in \mathbb{R}^n$, each $a \in U$, the **directional derivative of** f in the direction of v at a is the number

$$D_v f(a) = \left. \frac{d}{dt} \right|_{t=0} f(a+tv).$$

Remark 14. More precisely, given $a \in U$ and $v \in \mathbb{R}^n$, since U is open, there is an $\epsilon > 0$ such that $a + tv \in U$ for all $t \in \mathbb{R}$ such that $|t| < \epsilon$. Let $g : (-\epsilon, \epsilon) \to U$ be defined by

$$g(t) = a + tv$$

Since the map g is smooth, $f \circ g$ is smooth. Then

$$D_v f(a) = (f \circ g)'(0) = \sum_{i=1}^n \frac{\partial f}{\partial x^i}(a) v^i,$$

where the last equality follows from the chain rule.

9 The Inverse Function Theorem and the Implicit Function Theorem

Definition 14. Let (X, d) be a metric space. A map $G : X \to X$ is a **contraction** if there is a constant $\lambda \in (0, 1)$ such that $d(G(x), G(y)) \leq \lambda d(x, y)$ for all $x, y \in X$. We call such a λ a **contraction constant** for G.

Remark 15. Every contraction is continuous.

Definition 15. Let X be a set. A fixed point of a map $G : X \to X$ is a point $x \in X$ such that G(x) = x.

Lemma 1 (Contraction Lemma). Let (X, d) be a nonempty complete metric space. Every contraction $G: X \to X$ has a unique fixed point.

Proof. Let $x_0 \in X$. Let $x_{i+1} = G(x_i)$ for all $i \ge 0$. Let λ be a contraction constant for G. Then the sequence $(x_n) \subset X$ satisfies

$$d(x_i, x_{i+1}) = d(G(x_{i-1}), G(x_i)) \le \lambda d(x_{i-1}, x_i)$$

for all $i \ge 1$. By induction, we conclude that

$$d(x_i, x_{i+1}) \le \lambda^i d(x_0, x_1)$$

for all *i*. Hence for any i < j, we have that

$$d(x_{i}, x_{j}) \leq d(x_{i}, x_{i+1}) + d(x_{i+1}, x_{i+2}) + \dots + d(x_{j-1}, x_{j})$$

$$\leq \lambda^{i} (1 + \lambda + \dots + \lambda^{j-i-1}) d(x_{0}, x_{1})$$

$$= \lambda^{i} \frac{1 - \lambda^{j-i}}{1 - \lambda} d(x_{0}, x_{1})$$

$$\leq \lambda^{i} \frac{d(x_{0}, x_{1})}{1 - \lambda}.$$

Since $0 \le d(x_i, x_j) = d(x_j, x_i)$ for all i, j, and since $0 = d(x_i, x_i)$ for all i, we then conclude that

$$0 \le d(x_i, x_j) \le \lambda^{\min\{i, j\}} \frac{d(x_0, x_1)}{1 - \lambda}$$

for all i, j. Now since the last term converges to 0 as $i, j \to \infty$, we conclude that (x_n) is a Cauchy sequence in X. Therefore, since X is complete, there is an $x \in X$ such that $x_n \to x$. Since contractions are continuous, we then have that $G(x_n) \to G(x)$. However, since $G(x_n) = x_{n-1}$ for all $n \ge 1$, we then conclude that $x_n \to G(x)$ as well. In other words, G(x) = x, so x is a fixed point of G.

If x' is another fixed point, then

$$d(x, x') = d(G(x), G(x')) \le \lambda d(x, x').$$

Since $0 < \lambda < 1$, this implies that d(x, x') = 0, so that x = x'. Therefore G has exactly one fixed point.

Proposition 12 (Lipschitz Estimate for C^1 Functions). Let $U \subset \mathbb{R}^n$ be open, and let $F: U \to \mathbb{R}^m$ be C^1 . Then F is Lipschitz continuous on every compact convex subset $K \subset U$, with Lipschitz constant $\sup_{x \in K} |DF(x)|$, where

$$|DF(x)| = \sqrt{\sum_{i,j} ([DF(x)]_j^i)^2}$$

and [DF(x)] is the standard matrix representation of DF(x).

Proof. Let $a, b \in K$. Then for all $0 \le t \le 1$, $a + t(b - a) \in K$. From the fundamental theorem of calculus and the chain rule,

$$F(b) - F(a) = \int_0^1 \frac{d}{dt} F(a + t(b - a)) dt$$

= $\int_0^1 [DF(a + t(b - a))](b - a) dt$

Therefore, by properties of the integral and properties of the given matrix norm,

$$|F(b) - F(a)| \le \left(\sup_{x \in K} |DF(x)|\right) |b - a|.$$

Lemma 2 (The Inverse Function Theorem, Special Case). Let U and V be open neighborhoods of 0 in \mathbb{R}^n . Let $F: U \to V$ be smooth and such that F(0) = 0and $DF(0) = I_n$. Also, suppose that DF(x) is invertible for all $x \in U$. Then there are connected open neighborhoods $U_0 \subset U$ and $V_0 \subset V$ of 0 such that $F: U_0 \to V_0$ is a diffeomorphism.

Proof. Step 1: Finding a neighborhood of 0 for which F is injective. Let H(x) = x - F(x) for each $x \in U$. Then $DH(0) = I_n - I_n = 0$. Observe that the matrix entries of $[DH] = [I_n - DF]$ are continuous functions on U. Hence $DH: U \to L(\mathbb{R}^n, \mathbb{R}^n) \cong \mathbb{R}^{n^2}$ is continuous at $0 \in U$. Therefore, there is a $\delta > 0$ such that $K := B_{\delta}(0) \subset U$ and for all $x \in K$,

$$|DH(x) - DH(0)| = |DH(x)| \le 1/2.$$

From the Lipschitz estimate for C^1 functions applied to the function ${\cal H}$ and the compact set K,

$$|H(x) - H(x')| \le \frac{1}{2}|x - x'|$$

for all $x, x' \in K$. Taking x' = 0 gives us

$$|H(x)| \le \frac{1}{2}|x| \tag{9}$$

for all $x \in K$. Since

$$x - x' = F(x) - F(x') + H(x) - H(x')$$

for all $x, x' \in U \supset K$, we also have that

$$|x - x'| \le |F(x) - F(x')| + |H(x) - H(x')| \le |F(x) - F(x')| + \frac{1}{2}|x - x'|$$

for all $x, x' \in K$. This implies that

$$0 \le |x - x'| \le 2|F(x) - F(x')| \tag{10}$$

for all $x, x' \in K$, so that F is injective on K.

Step 2: Finding a neighborhood of 0 for which F is bijective. Let $y \in B_{\delta/2}(0) \subset K$. We will show that there is $x \in B_{\delta}(0) \subset K$ such that F(x) = y. For all $x \in K$, let G(x) = y + H(x) = y + x - F(x). Then G(x) = x iff F(x) = y. Now for all $x \in K$, equation (9) implies that

$$|G(x)| \le |y| + |H(x)| < \frac{\delta}{2} + \frac{1}{2}|x| \le \delta.$$

Then $G: K \to B_{\delta}(0) \subset K$, and

$$|G(x) - G(x')| = |H(x) - H(x')| \le \frac{1}{2}|x - x'|$$

for all $x, x' \in K$. Hence $G : K \to B_{\delta}(0) \subset K$ is a contraction map, so by the contraction mapping lemma, there is a unique $x \in K$ such that $G(x) = x \in B_{\delta}(0)$. Therefore there is a unique $x \in B_{\delta}(0)$ such that F(x) = y.

Step 3: Finding U_0 , V_0 , and $F^{-1}: V_0 \to U_0$. Let $V_0 = B_{\delta/2}(0) \subset K \subset U$ and let $U_0 = B_{\delta}(0) \cap F^{-1}(V_0) \subset K \subset U$. Then $U_0 \subset U$ and V_0 are open and steps 1 and 2 show that $F: U_0 \to V_0$ is bijective. Hence $F^{-1}: V_0 \to U_0$ exists. Given $y \in V_0$, we have that $F^{-1}(y) \in U_0 \subset U$, so $y = F(F^{-1}(y)) \in F(U) \subset V$. Hence $V_0 \subset V$ as well. Since equation (10) applies to all $x, x' \in K \supset U_0$, for any $y, y' \in V_0$, we have that

$$|F^{-1}(y) - F^{-1}(y')| \le 2|y - y'|,$$

so that $F^{-1}: V_0 \to U_0$ is continuous (even Lipschitz continuous). Therefore $F: U_0 \to V_0$ is a homeomorphism, so since V_0 is connected, U_0 is also connected. Step 4: Showing $F^{-1}: V_0 \to U_0$ is differentiable. Let $y \in V_0$, and let

 $y' \in V_0 - \{y\}$. Let $x = F^{-1}(y) \in U_0$ and let L = DF(x). Since $F^{-1}(V_0) = U_0 \subset K \subset U$, we have that L^{-1} exists by assumption and is linear since L is linear. Let $x' = F^{-1}(y') \in U_0$. Since F^{-1} is injective, $x \neq x'$. We also have that y = F(x) and y' = F(x'). Therefore, all of our observations imply that

$$\frac{|F^{-1}(y') - F^{-1}(y) - L^{-1}(y' - y)|}{|y' - y|} = \frac{|x' - x|}{|y' - y|} \frac{|L^{-1}(L(x' - x) - F(x') + F(x))|}{|x' - x|}$$

Since equation (10) applies to all $x, x' \in K \supset U_0$, we have that

$$\frac{|x'-x|}{|y'-y|} \le 2.$$

Since L^{-1} is a linear map between finite dimensional vector spaces, there is a constant C>0 such that

$$|L^{-1}(L(x'-x) - F(x') + F(x))| \le C|F(x') - F(x) - L(x'-x)|.$$

Therefore

$$0 \le \frac{|F^{-1}(y') - F^{-1}(y) - L^{-1}(y' - y)|}{|y' - y|} \le 2C \frac{|F(x') - F(x) - L(x' - x)|}{|x' - x|}.$$

Now if $y' \to y$, since F^{-1} is continuous, $x' \to x$. Then since L = DF(x) and since F is differentiable,

$$\frac{|F(x') - F(x) - L(x' - x)|}{|x' - x|} \to 0$$

as $x' \to x$. Hence

$$\frac{|F^{-1}(y') - F^{-1}(y) - L^{-1}(y' - y)|}{|y' - y|} \to 0$$

as $y' \to y$, so F^{-1} is differentiable at each $y \in V_0$ and

$$D(F^{-1})(y) = DF(F^{-1}(y))^{-1}$$

Step 5: Showing $F^{-1}: V_0 \to U_0$ is C^1 . Since F^{-1} is differentiable, the partial derivatives of F^{-1} exist and are the entries of the matrix-valued function $y \mapsto [D(F^{-1})(y)] = [DF(F^{-1}(y))]^{-1}$. This map can be realized as the composition of the maps

$$y \mapsto F^{-1}(y) \mapsto [DF(F^{-1}(y))] \mapsto [DF(F^{-1}(y))]^{-1}.$$
 (11)

We have that F^{-1} is continuous, $x \mapsto [DF(x)]$ is smooth as a map from U_0 to $\mathbb{R}^{n^2} \cong GL(n, \mathbb{R})$, and, because of Cramer's rule, taking inverses of invertible matrices is smooth when thought of as a map from $GL(n, \mathbb{R}) \cong \mathbb{R}^{n^2} \to GL(n, \mathbb{R}) \cong \mathbb{R}^{n^2}$. Therefore all the intermediate maps in the composition are at least continuous, so the entries of the map $y \mapsto [D(F^{-1})(y)]$ are continuous maps on V_0 . In other words, all the partial derivatives of F^{-1} exist and are continuous, so F^{-1} is C^1 .

Step 6: Showing F^{-1} is smooth. Suppose that F^{-1} is C^k . Then each of the maps in (11) is C^k , which implies that the entries of $y \mapsto [D(F^{-1})(y)]$ are C^k . In other words, all the partial derivatives of F^{-1} are C^k , so F^{-1} is C^{k+1} . Therefore, by induction, F^{-1} is smooth.

Theorem 1 (The Inverse Function Theorem, General Case). Let U and V be open subsets of \mathbb{R}^n , and let $F: U \to V$ be smooth. Let $a \in U$, and suppose that $DF(a): \mathbb{R}^n \to \mathbb{R}^n$ is invertible. Then there exist connected open neighborhoods $U_0 \subset U$ of a and $V_0 \subset V$ of F(a) such that $F: U_0 \to V_0$ is a diffeomorphism.

Proof. First we reduce to the special case. Let $a \in U$. Then since V is open, there is an r > 0 such that $F(a) \in B_r(F(a)) \subset V$, and there is an s > 0 such that $a \in B_s(a) \cap F^{-1}(B_r(F(a))) \subset U$. Since $B_s(a) \cap F^{-1}(B_r(F(a)))$ is open, there is an s' > 0 such that $a \in B_{s'}(a) \subset B_s(a) \cap F^{-1}(B_r(F(a)))$. Observe that when $x \in U_1 := B_{s'}(0), a + x \in B_{s'}(a)$ and $F_1(x) := F(a + x) - F(a) \in B_r(0) := V_1$. Then $F_1 : U_1 \to V_1$ is a smooth map between connected open neighborhoods U_1 of 0 and V_1 of $F_1(0) = 0$. Also, we have that $D(F_1)(0) = DF(a)$, so $D(F_1)(0)$ is invertible. Now let $F_2(x) = D(F_1)(0)^{-1}(F_1(x))$ for all $x \in U_1$. Then since $F_2 : U_1 \to \mathbb{R}^n$ is the composition of a smooth map and a linear map, we have that $F_2 : U_1 \to \mathbb{R}^n$ is smooth. We also have that $F_2(0) = 0$ since $F_1(0) = 0$ and $D(F_1)(0)^{-1}$ is linear. Furthermore, by the chain rule and linearity of $D(F_1)(0)^{-1}$, we have that

$$D(F_2)(0) = D(D(F_1)(0)^{-1})(F_1(0)) \circ D(F_1)(0) = D(F_1)(0)^{-1} \circ D(F_1)(0) = I_n.$$

Since F_2 is smooth, there is an s' > s'' > 0 such that $F_2(B_{s''}(0)) \subset B_r(0) = V_1$. Let $U_2 = B_{s''}(0)$, so that $U_2 \subset U_1$. The map $x \mapsto \det[D(F_2)(x)]$ is smooth on U_2 since it is a polynomial of the partial derivatives of F_2 which are smooth functions. Therefore, there is an 0 < s''' < s'' such that when |x| < s''', we have that

$$1 - |\det[D(F_2)(x)]| \le |\det[D(F_2)(0)] - \det[D(F_2)(x)]| < 1/2.$$

Hence when $x \in U_3 := B_{s'''}(0) \subset U_2$, we have that

$$\det[D(F_2)(x)]| > 1/2,$$

and thus $D(F_2)(x)$ is invertible for all $x \in U_3$. Hence the map $F_2: U_3 \to V_1$ is a smooth map between connected open neighborhoods U_3 and V_1 of 0 which satisfies $DF_2(0) = I_n$, $F_2(0) = 0$, and $D(F_2)(x)$ is invertible for all $x \in U_3$.

We now apply the special case to $F_2 : U_3 \to V_1$ to conclude that there are connected open neighborhoods $U_4 \subset U_3$ and $V_2 \subset V_1$ of 0 such that $F_2 : U_4 \to V_2$ is a diffeomorphism. Then since $F_1 = D(F_1)(0) \circ F_2 : U_4 \to V_3 := D(F_1)(0)(V_2)$, which is the composition of smooth maps between connected open neighborhoods of 0, we have that $F_1 : U_4 \to V_3$ is smooth. Furthermore, we also have that $F_1^{-1} = F_2^{-1} \circ D(F_1)(0)^{-1} : V_3 \to U_4$ exists and is smooth, so $F_1 : U_4 \to V_3$ is a diffeomorphism between connected open neighborhoods of 0. Now if $x \in U_0 := a + U_4 \subset U$, then $x - a \in U_4$ and

$$F(x) = F_1(x - a) + F(a) \in V_0 := F(a) + V_3.$$

Therefore $F: U_0 \to V_0$ is smooth. Given $y \in F(a) + V_3$, y = F(a) + z for some $z \in V_3 = F_1(U_4)$, so $y = F(a) + F_1(z')$ for some $z' \in U_4$. Then $a + z' \in U_0$ and

$$F(a + z') = F_1(z') + F(a) = y.$$

Hence $F: U_0 \to V_0$ is bijective. Thus, given $y \in V_0$, $F^{-1}(y) \in U_0 \subset U$, and thus $y \in F(U) \subset V$. Thus $U_0 \subset U$ is a connected open neighborhood of a and $V_0 \subset V$ is a connected open neighborhood of F(a). Finally, we also have that

$$F^{-1}(y) = F_1^{-1}(y - F(a)) + a$$

for all $y \in V_0$. Hence $F^{-1} : U_0 \to V_0$ is smooth, so $F : U_0 \to V_0$ is a diffeomorphism between a connected open neighborhood $U_0 \subset U$ of a and $V_0 \subset V$ of F(a). This completes the proof.

Theorem 2 (The Implicit Function Theorem). Let $U \subset \mathbb{R}^n \times \mathbb{R}^k$ be open and let $\phi: U \to \mathbb{R}^k$ be smooth. Let $(x, y) = (x^1, \ldots, x^n, y^1, \ldots, y^k)$ denote the standard coordinates on U. Let $(a, b) \in U$ and let $c = \phi(a, b)$. Suppose that the $k \times k$ matrix

$$\left[\frac{\partial \phi^i}{\partial y^j}(a,b)\right]$$

is nonsingular. Then there are open neighborhoods $V_0 \subset \mathbb{R}^n$ of a and $W_0 \subset \mathbb{R}^k$ of b and a smooth function $F: V_0 \to W_0$ such that for all $x \in V_0$ and $y \in W_0$, $\phi(x, y) = c$ iff y = F(x).

Proof. First we define a smooth function for which to apply the inverse function to. Let $\psi: U \to \mathbb{R}^n \times \mathbb{R}^k$ be defined by

$$\psi(x,y) = (x,\phi(x,y)).$$

This is smooth, and

$$[D\psi(a,b)] = \begin{bmatrix} I_n & 0\\ \frac{\partial\phi^i}{\partial x^j}(a,b) & \frac{\partial\phi^i}{\partial y^j}(a,b) \end{bmatrix}$$

is nonsingular by our assumptions. Therefore, by the inverse function theorem, there are connected open neighborhoods $U_0 \subset U$ of (a, b) and $Y_0 \subset \mathbb{R}^n \times \mathbb{R}^k$ of $\psi(a, b) = (a, c)$ such that $\psi: U_0 \to Y_0$ is a diffeomorphism.

Next, we define V_0 and W_0 . Since U_0 is an open subset of $\mathbb{R}^n \times \mathbb{R}^k$, there are open sets $V \subset \mathbb{R}^n$ and $W_0 \subset \mathbb{R}^k$ such that $(a,b) \in V \times W_0 \subset U_0$. Then $\psi(a,b) = (a,c) \in \psi(V \times W_0) \subset Y_0$ and $\psi : V \times W_0 \to \psi(V \times W_0)$ is a diffeomorphism. Let $V_0 = \{x \in V : (x,c) \in \psi(V \times W_0)\}$, so that $a \in V_0 \subset V$ is open and $b \in W_0$ is open.

Now, we define $F: V_0 \to W_0$. Since $\psi^{-1}: \psi(V \times W_0) \to V \times W_0$, is smooth, there are smooth functions $A: \psi(V \times W_0) \to V$ and $B: \psi(V \times W_0) \to W_0$ such that $\psi^{-1}(x, y) = (A(x, y), B(x, y))$ for all $(x, y) \in \psi(V \times W_0)$. Let $F: V_0 \to W_0$ be defined by F(x) = B(x, c) for all $x \in V_0$.

Now before we show that F has all of the desired properties, we make one observation. Let $(x, y) \in \psi(V \times W_0)$. Then

$$\begin{aligned} &(x,y) = \psi(\psi^{-1}(x,y)) \\ &= \psi(A(x,y), B(x,y)) \\ &= (A(x,y), \phi(A(x,y), B(x,y)) \end{aligned}$$

Comparing the first coordinates shows us that

$$A(x,y) = x$$

for all $(x, y) \in \psi(V \times W_0)$.

Now we show that F has all of the desired properties. First, since B is smooth, F is smooth. Next, if $x \in V_0$ and $y \in W_0$ is such that $\phi(x, y) = c$, then $\psi(x, y) = (x, c) \in \psi(V \times W_0)$, so that A(x, c) = x. Therefore,

$$(x,y) = \psi^{-1}(x,c) = (A(x,c), B(x,c)) = (x, F(x)).$$

Hence y = F(x).

Conversely, if $x \in V_0$ and $y \in W_0$ is such that y = F(x), then $(x,c) \in \psi(V \times W_0)$, so that A(x,c) = x. Therefore,

$$\begin{aligned} (x,c) &= \psi(\psi^{-1}(x,c)) \\ &= (A(x,c), \phi(A(x,c), B(x,c))) \\ &= (x, \phi(x, F(x))) \\ &= (x, \phi(x, y)). \end{aligned}$$

Comparing the second coordinates then implies that $\phi(x, y) = c$. This completes the proof.