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1 Total Derivatives

Definition 1. Let V and W be finite dimensional normed vector spaces. Let U
be an open subset of V. We say that a function F': U — W is differentiable
at a € U if there is a linear map L : V' — W such that

im |F(a+v)— F(a) — Lv _

v—0 |’U|

0. (1)

Remark 1. Equivalently, F' : U — W is differentiable at a € U iff there is a
linear map L : V — W such that

o [F) = F(a) = L(v — a)

v—a "U —a|

=0.

Proposition 1. If F: U — W is differentiable at a € U, then the linear map
L satisfying equation (1) is unique.



Proof. Let L and L’ be two such linear maps. Then L0 = 0 = L’0 by linearity.
Now let v € V — {0}, and let ¢ > 0. Then there is § > 0 such that when
0<ul <4,
F — F(a)— L
Flo-tu) —Flo)=tul
u

and . . I
|Fa+u)— Flo) = L'ul __

|ul

Let t = ﬁ and let v = tv. Then

5
0<|u|:t|v|:§<6.

Therefore

Lu—F F F —F(a)-L
- 1 < ] (M= Flo b )P [Flat) —Flo) )
t |ul |ul
< 2€|v]
for all ¢ > 0. Hence Lv = L'v for all v € V| so L is unique. O

Definition 2. If F is differentiable at a, the linear map L satisfying equation
(1) is denoted by DF(a) and is called the total derivative of F at a.

Remark 2. Equation (1) can be rewritten as
F(a+wv)=F(a)+ DF(a)v+ Rp(v) (2)
where Rp(v) = F(a+v) — F(a) — DF(a)v satisfies |R(v)|/|v] — 0 as v — 0.

Proposition 2. Let V, W, and X be finite dimensional vector spaces. Let
UCV beopen. LetacU. Let F,G:U — W, and let f,g: U — R. Then

~

. If F is differentiable at a, then F is continuous at a.
2. If F is constant, then F is differentiable at a and DF(a) = 0.

3. If F and G are differentiable at a, and if c € R, then cF+G is differentiable
at a and
D(cF + G)(a) = ¢cDF(a) + DG(a).

4. If f and g are differentiable at a, then fg is differentiable at a, and
D(fg)(a) = f(a)Dg(a) + g(a)D f(a).
5. If f and g are differentiable at a, and if g(a) # 0, then f/g is differentiable

at a and
(a)Df(a) — f(a)Dg(a)
g9(a)?

D(f/g)(a) =2



6. If T :' V. — W is linear, then T 1is differentiable at every v € V, with
DT(v)=T.

7. If B:V xW — X is bilinear, then B is differentiable at every (v,w) €
V xW, and
DB(v,w)(x,y) = B(v,y) + B(z, w).

Proof. 1. Since a € U is open, there is a neighborhood N of 0 such that
a+v e U for all v € N. Then for any v € N — {0},
|F(a+v)— F(a) — DF(a)
|v]
< Jol(|IR()|/|v] + |DF(a)])

F(a+v) - Fla)| = Uo| 4 IDF(a)

Since |R(v)|/|v| + |DF(a)| — |DF(a)| and |v] — 0 as v — 0, we conclude
that F' is continuous at a.

2. Since a € U is open, there is a neighborhood N of 0 such that a +v € U
for all v € N. Then for any v € N — {0},

|F(a+v) — F(a) — 0v _

0.
[l

Therefore 0 : V. — W satisfies the differentiability condition, so F' is
differentiable at a. By uniqueness, DF'(a) = 0.

3. Since a € U is open, there is a neighborhood N of 0 such that a +v € U
for all v € N. Then the conclusion follows from the fact that

IN@)| _ Br@)] | [Ec()]
ol = ol [l

for all v € N — {0}, where
N@w) = (cF+G)(a+v) — (cF + G)(a) — cDF(a)v — DG(a)v,
Rp(v) = F(a+v)—F(a)—DF(a)v, and Rg(v) = G(a+v)—G(a)—DG(a)v.

4. Since a € U is open, there is a neighborhood N of 0 such that a +v € U
for all v € N. Let v € N — {0}. We have that

fla+v) = fla)+ Df(a)v + Ry(v)

where

Ry(v) = fla+v) — f(a) = Df(a)v.
Similarly,

gla+0) = g(a) + Dgla)o + Ry (v)
where

Ry(v) = g(a+v) — g(a) — Dg(a)v.



Hence

(f9)(a+v) = (fg)(a) + f(a)Dg(a)v + g(a)D f(a)v + R(v),
where

R(v) = f(a)Ry(v) + Df(a)vDg(a)v + Df(a)vRg(v)+
Rs(v)g(a) + Ry(v)Dg(a)v + Ry(v)Rg(v).
We have that |R,4(v)|/|v] = 0 and |Rf(v)|/|v] — 0 as v — 0. We also have
that |Ry(v)| — 0 and

[Df(a)vDg(a)ol/v] < [Df(a)l|Dg(a)llv] = 0

as v — 0. From this, we see that |R(v)|/|v] — 0 as v — 0. Since we also
have that

R(v) = (fg)(a+v) = (fg)(a) — f(a)Dg(a)v — g(a) D f(a)v,
this proves the result.

. Since a € U C V is open, since g(a) # 0, and since ¢ is continuous at a,
there is an open neighborhood N C V of 0 such that a+v € U for allv € N
and g(a+v)#Oforallv e N. Thena+ N ={a+v:ve N} CU is an
open neighborhood of a. Let h : a + N — R be defined by h(u) = 1/g(u)
for all u € a + N. We will show that & is differentiable at a and

Indeed, we have that for any v € N — {0},

h(a +v) = h(a) = 1/g(a+v) —1/g(a)
_gla) —gla+v)

g9(a)g(a+v)
1
= - W(DQ(Q)U + Ry (v)).

Then 1

h(a+v) — h(a) + g(a)zDg(a)v = R(v),
where

1 1

700 = (e~ gtamte 1) PO sagta s e

Since

[Dg(a)vl/|v] < [Dg(a)l



and since |Ry(v)|/|v] = 0 and

— 0

as v — 0, we conclude that

’h(a +v) — h(a) + ﬁDQ(G)v’ _ |R(w)]

= —0
[0] g

as v — 0. Hence h is differentiable at a and

L 5 Dg(a).

P = =5

Now since f/g = fh on a+ N, we have that f/g is differentiable at a and

f(a) 9(a)Df(a) — f(a)Dg(a)

1
9@ gla)r 29 = 9(0)? ‘

g(a)

D(f/9)(a) = —Df(a) -

. For any v € V, any v/ € V — {0},

so the result follows immediately.
.ForanyveV,weW, (z,y) € VxW —{(0,0)}, we have that

|B(v+x,w—|—y)—B(v,w)—B(v,y)—B(x,w)| _ |B(.’£,y)|
(=, )] (@, )]

We will show that |B(z,y)|/|(x,y)| — 0 as (x,y) — 0, which will prove
the result.

First, suppose that {e1,...,e,} is a basis for V and {f1,...,fm} is a
basis for . Suppose that V and W are endowed with the /°°-norms with
respect to these bases, ie
o] = 1> aves] = max o
1
for all v =", a;e; in V and
jwl =1 Bifil = m?X|/5’j|
J

for all w = Zj Bif; € W. Also suppose that we have that ¢>° product
norm on V x W, ie |(v,w)| = max{|v|,|w|} forallv € V, w € W. Let z =



> mie; and y = 37 y; f; be arbitrary such that (z,y) € V. x W —{(0,0)}.
Then we have that

€ y) = inij(eivfj)a
,J

so that

ey
max{Ja], [y}
< nmmax | B(es, £;)| min{l, |y}

Bz, y)|/[(x, y)] < nmlr}f}XlB(emfj)l

and the last quantity converges to 0 as (x,y) converges to (0,0). This
proves the result when V, W, and V x W all have the norms that we
specified. Now if V., W, and V x W all have arbitrary norms on them,
since all norms on a finite dimensional vector space are equivalent, the
general result follows from what we just showed. In other words,

|B(z,y)|/[(z,y)] = 0

as (z,y) — (0,0) independent of choice of norms for V., W, V x W, and
X. This completes the proof.
O

Proposition 3 (Chain Rule for Total Derivatives). Let V, W, and X be finite
dimensional vector spaces. Let U C V and U C W be open subsets. Let F :
U—UandG:U — X. If F is differentiable at a € U and G is differentiable
at F(a) € U, then G o F is differentiable at a with

D(G o F)(a) = DG(F(a)) o DF(a).

Proof. Since F(a) € U is open, there is an open neighborhood N C W of 0 such
that F(a) +w € U for all w € N. Hence F(a)+ N = {F(a)+w:we N} c U
is an open neighborhood of F(a). Since F is continuous at @ and a € U is
open, there is an open neighborhood N C V of 0 such that a + v € U and
F(a+wv) € F(a) + N for all v € N. Then for any v € N — {0}, we have that

w(v) = F(a+wv) = F(a) = DF(a)v + Rp(v) € N.
Therefore, for v € N — {0} such that w(v

(v) #
G(F(a+v)) — G(F(a)) = G(F(a) + w(v)) — G(F(a))
= DG(F(a))w(v) + Ra(w(v))
= DG(F(a))DF(a)v + DG(F(a))Rp(v) + Rg(w(v)).

Hence
G(F(a+v)) — G(F(a)) — DG(F(a))DF(a)v = R(v),



where
R(v) = DG(F(a))Rr(v) + Ra(w(v)).
We have that |[Rp(v)|/|v] — 0 as v — 0. We also have that

Ro(w()| (Re(w(v)) Re(v)]
W l(DE@)| + [Re @] ('DF(“”* ol )
Ro(w(v))] Re(v)
= [DF(a)o + Br(0)] (DF(C‘)” ol )
_ Re(w()] R (v)]
)] ('DF( N+ )

Now since w(v) — 0 as v — 0, and since |Rg(w)|/|lw] — 0 as w — 0, the
inequality above shows that

|G(F(a+v)) = G(F(a)) = DG(F(a))DF(a)v| _ |R(v)|

[l vl

—0

as v — 0. This completes the proof. O

2 Partial Derivatives

Definition 3. Let U C R™ be open, and let f: U — R. Let eq,...,e, be the
standard basis vectors of R™. For any a € U and any j € {1,...,n}, the jth
partial derivative of f at a is

of fla+ he;) — f(a)
(91:3() hli% sz

if the limit exists.
Remark 3. We can use any symbol in place of « in the notation above.

Definition 4. Let U C R™ be open, and let F' : U — R™. The partial
derivatives of F are the partial derivatives of the component functions F' :
U — R where F(z) = (F(z),..., F™(x)) for all z € U. The matrix (0F!/0xz7)
of partial derivatives is called the Jacobian matrix of F', and its determinant
is the Jacobian determinant of F.

Proposition 4. Let U C R™ be open, and let F : U — R™. If F is differen-
tiable, then each of its partial derivatives exist at all points of U, and for each
a € U, the matriz representing DF(a) with respect to the standard bases of R™
and R™ is the Jacobian matriz (0F*/027(a)).

Proof. Let a € U and let j € {1,...,n}. Since U is open, there is an € > 0 such
that when |t| <€, a+te; € U. Then for all 0 < || <,

F(a+te;) — F(a) = tDF(a)e; + Rp(te;).



Then for each 1,

F'(a+ te;) — F'(a)
t

Rp(te;)'

= (DF(a)j + —,

(3)

Observe that for any norm | - | on R™, there is a constant C' > 0 such that
for all z € R™, all i € {1,...,m}, |z;] < C|z|. Indeed, this holds for C =1
with the £°° norm on R™, and since all norms are equivalent on R™, the general
result follows. In particular, there is a constant C' > 0 such that

|Rr(te;)'|/[t] < C|Rp(te;)|/ lte;|

for all 0 < |t]| < e.

Then since
|Rp(te))|

—0
[te;]

as t — 0, taking the limit as ¢ — 0 in equation (3) implies that

OF"
OxJ

for all 4, j, and a as desired. O

(a) = (DF(a));

Proposition 5. Let U C R™ be open, and let F : U — R™. Then F is
differentiable iff each component function F* : U — R is differentiable, where
the F' satisfy F(x) = (F*(z),...,F"(z)) for allz € U.

Proof. If F is differentiable, then for each a € U, the linear map DF'(a) : R —
R™ exists, and its standard matrix is given by

, OF?
(DF(@)) = 5 ().
Then since a € U is open, there is an € > 0 such that a + v € U for all |v| < e.
Then for each ¢ and each 0 < |v| < ¢, we have that
OF?

F'(a+v) — F'(a) = ‘ w(a)ijrRF(v)i.

Then the linear map v + 3, OF" /027 (a)v? from R™ to R satisfies

OF"

FZ(CL—FU)—Fl(a)— %
J

(a)v) = Rp(v)’ (4)

for all 0 < |v| < e. From equivalence of norms on R™, there is a constant C' > 0
such that ‘
[Br(v)'|/o] < C|Rp(v)|/]v] = 0

as v — 0. Therefore equation (4) implies that each F* is differentiable at each
acU.



Conversely, if each F? is differentiable, then for each a € U, the linear map
DFi(a) : R™ — R exists and its standard matrix is given by

OF"
= Oai (a).

(DF'(a));
Then for a € U and for v sufficiently small where a +v € U,

oF!

Fila+v) = Fi(a) = Y 55 (@)’ = Rp(v)

for each i, where |Rpi(v)|/|v] — 0 as v — 0. For each v sufficiently small, let
R(v) be the vector in R™ given by

R(v)" = Rpi(v).
Also, for each a € U, let L(a) : R™ — R™ be the linear map given by

oF! -
= - axj (a)v‘]

(L(a)v)’

for all 7. Then we have that for all a € U, for all v sufficiently small,
F(a+wv)— F(a) — L(a)v = R(v).

Observe that |R(v)|/|v| — 0 as v — 0 when R™ is given the ¢! norm. Since all
norms on R™ are equivalent, we then conclude that |R(v)|/|v| — 0 independent
of choice of norms on R™ and R™. Hence F is differentiable at all a € U. O

Remark 4. The proof of the previous proposition also shows that
(DF(a)); = (DF'(a));,

that is, the i-th row of the standard matrix of DF'(a) corresponds to the standard
matrix of DF*(a), provided that either F' is differentiable at a or all F* are
differentiable at a.

3 Continuously Differentiable Functions

Definition 5. Let U C R"™ be open. If FF : U — R™ is a function where
each of its partial derivatives exist at all points of U, and each of the functions
OF'/0z7 : U — R so defined are continuous, then F is said to be of class C*!
or continuously differentiable.

Remark 5. Tt follows immediately from the definitions that a function F' : U —
R™ defined on an open subset U of R™ is C! iff each F*: U — R is C'.

Proposition 6. Let U C R™ be open. If F : U — R™ is C', then F is
differentiable at each point of U.



Proof. First suppose that m = 1 and n = 2. Let a = (a',a?) € U. Since U is
open, there is an € > 0 such that when v € B(0,¢) — {0}, a4+ v € U. Given
v = (v1,v2) such that 0 < |v| < €, we have that

F(a+v)—F(a) = [F(a'4+v', a®*4+v?) = F(a', a* +v*)]+[F(a*, a®*+v?) - F(a*, a?))].

Since F is C', we can apply the mean value theorem twice to conclude that
there is w'(v) between a' and a' + v! and w?(v) between a? and a? + v? such
that

oF

F(a—i—v)—F(a):@

F
(' (), 0% + )0 + OF (o (0)?.
This defines functions w',w? : B(0,¢) — {0} — R such that w'(v) — a' and
w?(v) — a® as v — 0. Now let

R(v) = <gfl(w1(v),a2 +0%) — gfl(al,a?)> o'+
(Fatatu?o) - (e o,
so that OF OF
F(a+v)— F(a) — @(a)vl - @(a)zﬂ = R(v).

From the equivalence of norms on R", we have that there is a C' > 0 such that

RO _ ,|0F

< el

v = Oxt
OF OF

C|grata (o) - Jratata?

(w'(v),a® + v?) — TF(al,aQ)

and, by continuity of the partial derivatives, both terms on the right converge to
0 asv — 0. Hence |R(v)|/|v] = 0 as v — 0, so this shows that F is differentiable.
Therefore the result holds for m =1 and n = 2.

The case for m = 1 and general n is a straightforward generalization of
the argument we just gave, just with more notation: write F'(a + v) — F(a)
as a telescoping sum and apply the mean value theorem to each of the relevant
pieces. The case for arbitrary m and n proceeds as follows: If F'is C, then each
of the component functions F? : U — R are C', so we can apply our m = 1 case
to each component function to conclude that each F?: U — R is differentiable.
But then that implies that F' : U — R™ is differentiable. This completes the
proof. O

Remark 6. If U is an open subset of R® and F : U — R™ is C*, then since the
matrix representing DF has entries given by the partial derivatives of F, we
have that DF : U — L(R™,R™) = R™ is continuous.

10



4 Higher Order Derivatives

Definition 6. Let U C R™ be open and F : U — R™. If F is of class C', then
we can differentiate the partial derivatives to obtain second-order partial

derivatives . )
O*F? 0 [oFr"
Orkdxi — Ozk \ Oxd

whenever they exist. Continuing in this way, the partial derivatives of F' of
order k are the partial derivatives of those of order k — 1 whenever they exist.

Definition 7. Let U C R™ be open and let F': U — R™. We say that F' is of
class C* or k times continuously differentiable if all the partial derivatives
of F of order less than or equal to k exist and are continuous functions on U.
In particular, CY is the class of continuous functions.

Remark 7. Let U € R™ be open and F : U — R™. Then F is C* iff for all
x € U, there is an open neighborhood N of x such that F: NNU — R™ is C*.

Remark 8. If a function is C**1, then it is also C*. Furthermore, a function
is Ck*+1 iff its partial derivatives are C*, and a function is C* iff all of its
component functions are C¥.

Definition 8. A function that is class C* for all £ > 0 is said to be class C,
smooth, or infinitely differentiable.

Remark 9. A function is smooth iff its partial derivatives are smooth iff its
partial derivatives of all orders are smooth iff all of its component functions are
smooth.

Proposition 7. Let U C R"™ be open, and let F : U — R™ be C2. Then
the mized second-order partial derivatives of F' do not depend on the order of

differentiation: ) ,
O F? O F?

Oxidzk  Oxkoxi

for alli, j, and k.

Proof. Let a € U. Since U is open, there is € > 0 such that when v € B™(0, ¢),
a+veU. Let A: BY0,¢/2) — R be defined by

A(s) = F'(a+ se; + sex) — F'(a + se;) — F(a + sey,) + F(a).
Let G : BY(0,¢/2) — R be defined by
Gs(t) = F'(a+ sej +tey) — F'(a + tey)
for each s € B(0,¢/2). Then each Gy is C!, and

A(s) = Gy(s) — Gs(0)

11



for all s € B1(0,¢/2). By the mean value theorem, there is § : B1(0,¢/2) — R
such that 0 < |6(s)| < |s| for all s € B1(0,¢/2) and
A(s) OF? OF
— = GL(6(s)) = G (a+ se; +d(s)ex) — @(a +4(s)ex) (5)
for all s € BY(0,¢/2) — {0}. Since OF*/dx* is C!, and hence differentiable, we
have that
OF! OF! O*F' O*F'

gt (e tols)er) = 5opla)t 5w (s giger (@)

and

0(s)+R(se;+d(s)ex)

OF" OF! 0?F!
w(a +0(s)ex) = @(a) + W(a)é(s) + R(d(s)ex)
for all s € B1(0,¢/2). Substituting our last two equations into equation (5)
implies that
A(s)  PF" (a) = R(sej +d(s)er)  R(d(s)ex) (©)
52 OxI Dk s s
for all s € B(0,¢/2) — {0}.
Now since [0(s)| < |s| for each s, we have that
[R(O(s)ex)| _ [R(3(s)er)]
sl 7 [0(s)ex]
as s — 0. If we give R™ the £°° norm, we also have that |se; + (s)eg|oo < |5].

Therefore, by equivalence of norms, for the given arbitrary norm on R™ there is
a constant C' > 0 such that

-0 (7)

|se; +d(s)ex| < Cs
for all s. Therefore
|R(se; + d(s)ex)] |R(se; + 6(s)eg)]
5| T |sej +6(s)ex]

—0 (8)

as s — 0. Equation (6) and inequalities (7) and (8) then imply that

A(s) O?Ft
52 - OzI Oxk (a)

as s — 0.
Now for each s € B1(0,¢/2), let Hy : B(0,¢/2) — R be defined by
Hy(t) = F'(a + te; + sex) — F'(a + te;).

Then by following a similar argument as before, using H, in place of G5 and
OF"/0z7 in place of OF'/0z*  we can also show that

A(s) O?Ft
— -
52 OxkdzI (a)
as s — 0. Hence the second order mixed partials agree at all a € U, which is
what we wanted to show. O

12



Corollary 1. If U C R™ is open and F : U — R™ is smooth, then the mixed
partials of order k + 2 do not depend on the order of differentiation for all k:
8k+2Fi 8k+2Fi
Oxk+2 ... Qi1 = OxJok+2) ... Qo)
for all i, all k, all (k + 2)-tuples (j1,...,jr+2) where each 1 < j; < n, and all
permutations o : {1,....,k+2} = {1,..., k+2}.

Proof. We prove this by induction. The base case k = 0 was proved by the last
proposition. Suppose this holds for some k > 0. Now let (j1,...,Jjr+3) be a
(k+3)-tuple where each 1 < j; < k43, andlet o : {1,...,k+3} — {1,...,k+3}
be a permutation. If o(k+3) =k + 3, then o : {1,...,k+2} — {1,...,k+ 2}
is a permutation. Therefore, for any i, we have that

gr 9 gr2p
Oxdotk+3) ... Gpdo) = uirts (axjo'(k+2) o Ogde )
o oF+2 i
= Qaints <8acjk+2 <o Qi )
OF 3 i

- Oxik+s ... Qpir’
If instead k+3 € o({1,...,k+2}), then we also have that o(k+3) € {1,...,k+
2}. Let [ € {1,...,k 4+ 2} be such that o(I) = k + 3. For convenience, assume
that 1 <1 < k+ 2. Then for all 4,
akJrBFi o ( 8k+2Fi )

Ordo+3) « .. Ogio)  Ypdote+s) \ Opieh+2) ... Qpio@)

0 oFt2
T 9xdetts) \ §rle) Oadeet2) . .. Hrie)

82 ak+1Fi
T Oxdekt3) Hadew) (8xjo(k+2) e Qe )

82 8k+1Fi
T 9xde) i k+3) (awja'(k+2) e Ogde )

8 6k+2Fi
= OxJk+3 (amja(k+3) R P EAeH) )

ak+3Fi
= Oxdr+s « .. Ogir’
The case when [ = 1 or | = k + 2 follows almost exactly as above, just with
some slight modifications to the notation. Therefore the proof is finished by
induction. U

5 Diffeomorphisms

Definition 9. If U and V are open subsets of Euclidean space, a function
F : U — V is a diffeomorphism if it is smooth, bijective, and its inverse is

13



smooth.

Remark 10. Every diffeomorphism between open subsets of Euclidean space is
a homeomorphism.

Proposition 8. Let U C R™, V C R™, be open, and let F' : U — V be a
diffeomorphism. Then m = n, and for each a € U, the total derivative DF(a)
is invertible with DF(a)~! = D(F~1)(F(a)).

Proof. Since F is a diffecomorphism, in particular F and F~! are both C! and
hence differentiable, so DF(a) exists at each a € U and D(F~1)(b) exists at
each b € V. Hence F~! o F = Ij; is differentiable, and it is easy to verify that

DIU((I) = IRn,

Ign = D(F~' o F)(a) = D(F')(F(a)) o DF(a).

Similarly, since F o F~! = Iy, we also have that
Igm = DF(a) o D(F~Y)(F(a)).

Hence DF(a) is an invertible linear map from R™ to R™ with inverse

and thus n = m. O

6 Smooth Real-Valued Functions

Definition 10. If U C R" is open, we let C*(U) denote the set of all C*
functions from U to R, and we let C*°(U) denote the set of all smooth functions
from U to R. Sums, scalar multiples, and products are all defined pointwise:
given f,g: U — R and ¢ € R,

(f +9)(x) = f(2) + g(2),
(ef)(x) = e(f(2)),

(f9)(x) = f(x)g(x).

Proposition 9. Let U C R™ be open and let f,g € C°(U) and ¢ € R. Then
f+g, cf, and fg all belong to C*(U). Thus C*(U) is a commutative ring
and a commutative and associative algebra over R.

Proof. From the definitions:

Ncf+g), . Of 9g
W(@ = C@(fﬂ) + @(ff)

14



for all j and all . Thus cf + ¢ is C'. In fact, this shows that taking partial

derivatives is a linear operation. Now if c¢f +g¢ is C*,C?,...,C*, and if an order
k partial derivative of f + g is of the form
*(cf +9) o f g

(z) = (z),

R

(z) +

ax]k “ e ale ax]k e ax,]l

then an order k + 1 partial derivative of cf + g is of the form

8k+1(cf+g) 8’”19
OxIk+1 ... Ot OxIk+1 ... Qg1

ak+1
(2) = !

T T QiR+l .. Qi

(z) + (z)

which is continuous. Hence, by induction, c¢f 4 g is smooth. Taking ¢ = 1 shows
that f + g is smooth for all smooth f and g, and taking g = 0 shows that cf is
smooth for all ¢ and all smooth f.

Now
OI0) () _ iy L+ e + hey) — F(@)ota)
OxJ h—0 h

= I )g@) + 1) 22 (2)

for all 2 and all j, so we conclude that fg is C', and the partial derivatives of
fg of order 1 are sums of products of partial derivatives of f and g of order at
most 1.

Now suppose that fgis C*, C2, ..., C* and the partial derivatives of fg of
order k are sums of products of partial derivatives of f and g of order at most
k. A particular term in a kth order partial derivative of fg is of the form

o' f

dlg

ale ce. 81‘]1

() (z)

where 0 < 4,1 < k (a partial derivative of order 0 is just f(z) or g(x)). Therefore,
differentiating one of these terms gives us a term of the form

8lf al+lg

aiJrlf

OxI Oz - - - Ot

dlg

8gjjl ce. 61‘]1

(z)

Since taking partial derivatives is a linear operation, differentiating an order k
partial derivative of fg to obtain an order k+ 1 partial derivative of fg will give
us some of terms like above, which shows that all order k£ + 1 partial derivatives
of fg are continuous. Hence, by induction, fg is smooth when f and g are
smooth.

It immediately follows from the algebraic properties of R that C*°(U) is
a commutative ring and a commutative and associative algebra over R. The
additive identity is the 0 function, the multiplicative identity is the constant 1
function, and the additive inverse of f is the function —f = (—1)f. O
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Proposition 10. Let U C R™ and UCR™ be open.

1.IfF:U—Uand G :U — R? are C*, then Go F : U — R? is C', and
its partial derivatives are given by

8(6” °F) aGz aFk
Z )57 (@)

2. If F and G are smooth, then G o F' is smooth.

Proof. Since F and G are C', they are differentiable, so G o F is also differen-
tiable, and for each x € U, the matrix of D(G o F)(z) is given by
A(Gi o F) i
e 25 (0) = [D(G o F)@)]

[DG(F(x)) o DF ()]}

I
NE

[DG(F ()| [DF ()]}

E
I
-

7 k
(P (@)

I
e

~
Il
—

This shows that the partial derivatives of G o F' are sums of products of contin-
uous functions, which is continuous. Hence G o F' is C''. Thus the composition
of O functions is C*.

Suppose now that the composition of C* functions is C*. If F' and G are
C**1, then let

’ IG?
[(y) = Tyl(y)
for all 4, [, and y. Then our computation above shows that
G o F - aFk
Oz’ - — (Hi o F(x (’hﬂ o7 @

=1

for all i, j, and x. Since G is C**1 each H} is C*. Since F is C**1, and
hence is also C*, we have that H} o F is C* and 9F* /927 is also C*. Therefore
the partials of G* o F' are sums of products of C* functions, and hence is C*.
Therefore each G* o F is C¥t1 so G o F is C**! whenever G and F are C*T1.
Hence, by induction, the composition of C* functions is C* for all k. From this,
it follows that the composition of smooth functions is smooth. O

Corollary 2. Let U C R"™ be open, and let f,g: U — R. If f and g are smooth,
and if g never vanishes on U, then f/g is smooth.

Proof. Let h: R — {0} — R be defined by h(z) = 1/z. Then for any z # 0,
B (z) = —1/x?
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which is continuous. Therefore h is C!, and

(—1)t!
M) =
for all x € R — {0}. Now suppose that h is C* and

k 1k
T @) = TR = (1 ah(o(@)

for all # € R — {0}, where p : R — R is defined by p(z) = z'**. Then since
p'(z) = (k + 1)z, we have from the chain rule that

d*+Lh 5 = (—=D)k 1k + 1)
drk+1 - pltk+1

for all x € R—{0}. Hence, by induction, h is smooth. Since f/g = f-(hog) on
U, and since the multiplication and composition of smooth functions is smooth,
we conclude that f/g is smooth. O

7 Extension to Non-Open Subsets

Definition 11. If A C R", then F': A — R™ is smooth on A if for all x € A,
there is an open neighborhood U C R” of x and a smooth function F:U—>R™
such that F = F on U N A. We call such an F a smooth extension of F on
an open neighborhood of z.

Remark 11. If U C R” is open, then F' : U — R™ is smooth on U as above iff
F :U — R™ is smooth in the previously defined sense.

Remark 12. Let A C R™. If F: A — R" is smooth, then F' is continuous.

Proposition 11. Let AC R*, BCR™, F: A — R" G : B — RP, and
F(A) C B. If F and G are smooth, then Go F : A — RP is smooth.

Proof. Let € A. Then there is an open neighborhood V of f(z) and a smooth
function G : V — RP such that G = G on V N B, and there is an open
neighborhood U of x and a smooth function F:U — R™ such that F = F on
UNA. Then UNE~Y(V) is an open neighborhood of z and GoF : UNF~1(V) —
R? is a smooth function such that G o F = G o F on U N F~1(V) N A. Hence
GoF: A— RPissmooth. O

Definition 12. Given A C R™ and B C R™, a diffeomorphism from A to
B is a smooth bijection F': A — B with smooth inverse.

Remark 13. Every diffeomorphism between subsets of Euclidean space is a
homeomorphism.

17



8 Directional Derivatives

Definition 13. Let f : U — R be a smooth real-valued function on an open
subset U of R™. For each v € R™, each a € U, the directional derivative of
f in the direction of v at a is the number

d

D,f(a) = 7

fla+tv).
t=0

Remark 14. More precisely, given a € U and v € R"”, since U is open, there is
an € > 0 such that a +tv € U for all t € R such that || <e. Let g: (—e,¢) > U
be defined by

g(t) = a + tv.

Since the map ¢ is smooth, f o g is smooth. Then

Df(@) = (7o9)(0) =3 20 (@t

i=1

where the last equality follows from the chain rule.

9 The Inverse Function Theorem and the Im-
plicit Function Theorem

Definition 14. Let (X, d) be a metric space. A map G : X — X is a contrac-
tion if there is a constant A € (0,1) such that d(G(z), G(y)) < Ad(zx,y) for all
x,y € X. We call such a A a contraction constant for G.

Remark 15. Every contraction is continuous.

Definition 15. Let X be a set. A fixed point of a map G : X — X is a point
z € X such that G(z) = .

Lemma 1 (Contraction Lemma). Let (X,d) be a nonempty complete metric
space. Every contraction G : X — X has a unique fized point.

Proof. Let ©y € X. Let x;41 = G(x;) for all ¢ > 0. Let A be a contraction
constant for G. Then the sequence (x,) C X satisfies

d(zi, xip1) = d(G(xi-1), G(2;)) < Ad(wi-1,7;)
for all 4 > 1. By induction, we conclude that

d(xi, .131'_;,_1) S /\id(.ﬁo7 .561)
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for all i. Hence for any i < j, we have that

d(zi,z;) < (i, Ti1) + d(Ti1, Tiva) + -+ d(@j-1, 25)
SNA+ A4+ N d(o, 1)

1 — NI
Zﬁd(ﬂfoyﬂfl)

d(wml'l)
11—\

=\
<\

Since 0 < d(z;,x;) = d(zj, ;) for all 4, j, and since 0 = d(z;,x;) for all 4, we
then conclude that

d(zo, 1)

1—A

for all 4, j. Now since the last term converges to 0 as ¢, j — oo, we conclude that
(z,,) is a Cauchy sequence in X. Therefore, since X is complete, there is an
x € X such that x,, — x. Since contractions are continuous, we then have that
G(zy) — G(x). However, since G(z,,) = xp_1 for all n > 1, we then conclude

that z, — G(x) as well. In other words, G(z) = z, so z is a fixed point of G.
If 2/ is another fixed point, then

d(z,2") = d(G(z),G(z")) < M\d(x,2).

0 < d(w;,x;) < \minlid}

Since 0 < A < 1, this implies that d(z,z") = 0, so that = 2’. Therefore G has
exactly one fixed point. O

Proposition 12 (Lipschitz Estimate for C! Functions). Let U C R™ be open,
and let F : U — R™ be C'. Then F is Lipschitz continuous on every compact
convex subset K C U, with Lipschitz constant sup,c g |[DF ()|, where

IDF(2)| = > ([DF(x)]))?

%
and [DF(z)] is the standard matriz representation of DF(x).

Proof. Let a,b € K. Then for all 0 < ¢t < 1, a+t(b —a) € K. From the
fundamental theorem of calculus and the chain rule,

1
F(b) — F(a) = /0 %F(ath(b—a))dt

_ /O DF(a 4 (b — a)](b— a) dt.

Therefore, by properties of the integral and properties of the given matrix norm,

F(b) — Fla)| < (jgwmn) b—al.
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Lemma 2 (The Inverse Function Theorem, Special Case). Let U and V be open
neighborhoods of 0 in R™. Let F : U — V be smooth and such that F(0) =0
and DF(0) = I,,. Also, suppose that DF (x) is invertible for all x € U. Then
there are connected open neighborhoods Uy C U and Vo C V' of 0 such that
F:Uy— Vy is a diffeomorphism.

Proof. Step 1: Finding a neighborhood of 0 for which F' is injective. Let H(x) =
x — F(x) for each x € U. Then DH(0) = I, — I, = 0. Observe that the
matrix entries of [DH]| = [I,, — DF] are continuous functions on U. Hence
DH :U — L(R",R") = R"’ is continuous at 0 € U. Therefore, there is a § > 0
such that K := Bs(0) C U and for all x € K,

IDH(x) — DH(0)] = |DH()| < 1/2.

From the Lipschitz estimate for C! functions applied to the function H and the
compact set K,

[H(z) ~ H(«')| < 5w~
for all z,2’ € K. Taking 2’ = 0 gives us
[H ()| < 5lal (9
for all z € K. Since
x—a =F(z)— F(z')+ H(z) — H(z2')
for all z,2’ € U D K, we also have that
[z — 2| < |F(x) = F(a')| + |H(z) - H(2")| < [F(2) - F(2')] + %lx — ']
for all z, 2’ € K. This implies that
0<|z—2'| <2|F(z) — F(2)| (10)
for all z, 2’ € K, so that F is injective on K.
Step 2: Finding a neighborhood of 0 for which F' is bijective. Let y €
Bs/2(0) € K. We will show that there is © € Bs(0) C K such that F(z) = y.

Forall z € K, let G(x) = y+ H(z) =y+x— F(x). Then G(z) = z iff F(z) = y.
Now for all z € K, equation (9) implies that

o 1
G| < Iyl + |H(@)| < § + 5ol <6

Then G : K — Bs(0) C K, and
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for all z,2’ € K. Hence G : K — B;s(0) C K is a contraction map, so by the
contraction mapping lemma, there is a unique € K such that G(z) = z €
B;(0). Therefore there is a unique x € Bs(0) such that F(z) = y.

Step 3: Finding Uy, Vo, and F~1 : Vy — Up. Let Vo = By2(0) C K C U
and let Uy = Bs(0) N F~(Vy) € K C U. Then Uy C U and V; are open and
steps 1 and 2 show that F : Uy — Vj is bijective. Hence F~! : Vy — U, exists.
Given y € Vp, we have that F~1(y) e Uy Cc U, soy = F(F~'(y)) €e F(U) C V.
Hence Vo C V as well. Since equation (10) applies to all z,2’ € K D Uy, for
any y,y’ € Vp, we have that

[F~ ) = F () < 2ly — /|,

so that F~! : Vj — Up is continuous (even Lipschitz continuous). Therefore
F : Uy — Vj is a homeomorphism, so since Vj is connected, Uy is also connected.
Step 4: Showing F~' : Vi — Uy is differentiable. Let y € Vj, and let
vy € Vo —{y}. Let x = F~1(y) € Uy and let L = DF(z). Since F~(Vp) =
Uy C K C U, we have that L1 exists by assumption and is linear since L is
linear. Let ' = F~1(y') € Uy. Since F~! is injective, x # 2’. We also have
that y = F(x) and y’ = F(2'). Therefore, all of our observations imply that

(Fy) = F () - L' —y)| _ o' =] |L7 (L — @) = F(2') + F())|

Iy —y ly" — yl |z" — 2|

Since equation (10) applies to all z, 2’ € K D Uy, we have that

|2" — z| <o
ly" =yl

Since L™! is a linear map between finite dimensional vector spaces, there is a
constant C' > 0 such that

LN (L' —«) - F(a') + F(x))| < CIF(2') = Fx) - L(z' — ).

Therefore

[F~'(y) = F 'y)— L' (y — )|
ly" =yl

|F(2") — F(z) - L{@' — )|

0<
|2 — |

<2C
Now if 3/ — ¥, since F~! is continuous, 2’ — z. Then since L = DF(x) and
since F' is differentiable,

|F(2') = F(z) - L(z' — )

|2 — x|

—0

as ¢/ — z. Hence

F'(y)—F '(y) - L'y —y)|

/ —0
ly" =y
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as y' — y, so F~1 is differentiable at each y € V; and
D(F™')(y) = DF(F~}(y))~".

Step 5: Showing F~! : Vj = Uy is C'. Since F~! is differentiable, the partial
derivatives of F~! exist and are the entries of the matrix-valued function y
[D(F~Y)(y)] = [DF(F~'(y))]~!. This map can be realized as the composition
of the maps

y = F7(y) = [DF(F~ ()] = [DFFE ()] (11)

We have that F~! is continuous, z + [DF(x)] is smooth as a map from Uy
to R = GL(n,R), and, because of Cramer’s rule, taking inverses of invert-
ible matrices is smooth when thought of as a map from GL(n,R) = R™ —
GL(n,R) = R . Therefore all the intermediate maps in the composition are
at least continuous, so the entries of the map y — [D(F~1)(y)] are continuous
maps on Vy. In other words, all the partial derivatives of F~! exist and are
continuous, so F~1 is CL.

Step 6: Showing F~! is smooth. Suppose that F~! is C*. Then each of
the maps in (11) is C*, which implies that the entries of y — [D(F~1)(y)] are
C*. In other words, all the partial derivatives of F'~! are C¥, so F~1 is C¥*+1,
Therefore, by induction, F~! is smooth. O

Theorem 1 (The Inverse Function Theorem, General Case). Let U and V be
open subsets of R™, and let F': U — V be smooth. Let a € U, and suppose that
DF(a) : R™ — R" is invertible. Then there exist connected open neighborhoods
UoCU ofa and Vo CV of F(a) such that F : Uy — Vy is a diffeomorphism.

Proof. First we reduce to the special case. Let a € U. Then since V is open,
there is an r > 0 such that F'(a) € B.(F(a)) C V, and there is an s > 0 such that
a € Bs(a)N F~Y(B,(F(a))) C U. Since Bs(a) N F~Y(B,(F(a))) is open, there
is an s’ > 0 such that a € By (a) C Bs(a)NF~1(B,(F(a))). Observe that when
z €Uy :=By(0), a+ 2z € By(a) and Fi(x) := F(a+ x) — F(a) € B,.(0) := V1.
Then Fy : Uy — Vj is a smooth map between connected open neighborhoods
Uy of 0 and V; of F1(0) = 0. Also, we have that D(F1)(0) = DF(a), so
D(F1)(0) is invertible. Now let Fy(z) = D(Fy)(0)"!(Fi(z)) for all x € Us.
Then since F, : Uy — R” is the composition of a smooth map and a linear
map, we have that Fy : U; — R™ is smooth. We also have that F5(0) = 0
since F1(0) = 0 and D(F1)(0)~ ! is linear. Furthermore, by the chain rule and
linearity of D(F;)(0)~!, we have that

D(F3)(0) = D(D(Fy)(0)~")(F1(0)) o D(Fy)(0) = D(F1)(0)~" o D(F1)(0) = I,.

Since F; is smooth, there is an s’ > s” > 0 such that F» (B, (0)) C B,(0) = V1.
Let Uy = By (0), so that Uz C Uy. The map = +— det[D(F3)(x)] is smooth on
U, since it is a polynomial of the partial derivatives of F» which are smooth
functions. Therefore, there is an 0 < s’ < s” such that when |z| < s", we have
that

1= | det[D(Fy)(@)]| < |det[D(F3)(0)] — det[D(Fy)(x)]| < 1/2.
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Hence when = € Us := By (0) C Us, we have that
| det[D(F2)(z)]| > 1/2,

and thus D(F»)(x) is invertible for all x € Us. Hence the map Fy : U3 — V)
is a smooth map between connected open neighborhoods Us and V; of 0 which
satisfies DF(0) = I, F5(0) = 0, and D(F3)(x) is invertible for all « € Us.

We now apply the special case to F5 : U3 — V; to conclude that there
are connected open neighborhoods Uy C Us and Vo C V; of 0 such that F5 :
Uy — Va is a diffeomorphism. Then since Fy = D(F})(0) o Fy : Uy — V3 :=
D(F1)(0)(Va), which is the composition of smooth maps between connected
open neighborhoods of 0, we have that Fy : Uy — V3 is smooth. Furthermore,
we also have that F; ' = F; ' o D(F})(0)~! : V3 — Uy exists and is smooth, so
Fy : Uy — V3 is a diffeomorphism between connected open neighborhoods of 0.
Now ifx € Uy:=a+ U, C U, then x —a € Uy and

F(z) = Fi(x —a)+ F(a) € Vo := F(a) + V5.

Therefore F : Uy — Vp is smooth. Given y € F(a) + V5, y = F(a) + z for some
z € V3 =F1(Us), soy = F(a) + Fi(z) for some 2z’ € Uy. Then a + 2z’ € Uy and

Fla+z2")=F(2)+ F(a) = y.

Hence F : Uy — Vj is bijective. Thus, given y € Vo, F~(y) € Uy C U, and
thus y € F(U) C V. Thus Uy C U is a connected open neighborhood of a and
Vo C V is a connected open neighborhood of F(a). Finally, we also have that

F~'y) = F{ 'y — F(a)) + a

for all y € Vi. Hence F~' : Uy — Vp is smooth, so F : Uy — Vj is a diffeo-
morphism between a connected open neighborhood Uy C U of @ and V C V of
F(a). This completes the proof. O

Theorem 2 (The Implicit Function Theorem). Let U C R™ xR¥ be open and let
¢ : U — RF be smooth. Let (z,y) = (z',...,2",y", ...,y") denote the standard
coordinates on U. Let (a,b) € U and let ¢ = ¢(a,b). Suppose that the k x k
matrix

is nonsingular. Then there are open neighborhoods Vo C R™ of a and Wy C RF
of b and a smooth function F : Vi — Wy such that for all x € Vy and y € Wy,

o(z,y) = ciffy = F(x).

Proof. First we define a smooth function for which to apply the inverse function
to. Let ¢ : U — R™ x R* be defined by

P(z,y) = (2, 0(z,y))-
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This is smooth, and

1 0
gf;- (a,b) gf; (a,b)

[D'L/}(aa b)] =

is nonsingular by our assumptions. Therefore, by the inverse function theorem,
there are connected open neighborhoods Uy C U of (a,b) and Yy C R™ X R¥ of
¥ (a,b) = (a,c) such that ¢ : Uy — Yy is a diffeomorphism.

Next, we define Vy and Wy. Since Uy is an open subset of R” x R¥, there are
open sets V' C R and Wy C R* such that (a,b) € V x Wy C Uy. Then ¢ (a,b) =
(a,¢) € Y(V x Wy) C Yo and ¢ : V x Wy — (V x Wp) is a diffeomorphism.
Let Vo ={z € V: (x,¢) € ¥(V x Wy)}, so that a € Vo C V is open and b € W)
is open.

Now, we define F : Vy — Wy. Since ¢~ : (V x W) — V x Wy, is smooth,
there are smooth functions A : ¥(V x Wy) — V and B : ¥(V x Wy) — Wy such
that v~ !(z,y) = (A(z,y), B(z,y)) for all (x,y) € Yp(V x Wy). Let F: Vo — Wy
be defined by F(z) = B(z,c) for all x € V.

Now before we show that F' has all of the desired properties, we make one
observation. Let (x,y) € ¥(V x Wy). Then

(5571/) = ¢(¢_1($7y))
= (A(m,y), d)(A(JZ, y)7 B(x7y))

Comparing the first coordinates shows us that
Alz,y) ==

for all (z,y) € ¥(V x Wy).

Now we show that F' has all of the desired properties. First, since B is
smooth, F' is smooth. Next, if x € Vj and y € Wy is such that ¢(x,y) = ¢, then
Y(z,y) = (x,¢) € P(V x Wy), so that A(z,c) = x. Therefore,

(z,y) =¥~ (z,¢) = (A(x, ), B(,c)) = (2, F(x)).

Hence y = F(z).
Conversely, if € Vy and y € Wy is such that y = F(x), then (z,¢) €
Y(V x Wy), so that A(x,c¢) = z. Therefore,

(z,¢) = (™ (2,¢))

= (A(z, ), ¢(A(, ), B(x, ¢))
= (z,¢(z, F(x)))
= (z,9(z,y)).
Comparing the second coordinates then implies that ¢(x,y) = ¢. This completes
the proof. O
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