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Introduction

The Euler-Poisson equations are a coupled system where

the compressible Euler equations of gas dynamics are

coupled to a scalar potential that satisfies Poisson’s

equation. The system has applications in plasma physics,

semiconductor device modeling, and vacuum electronics,

where it is often used to model an electron fluid that is

subject to electrostatic forces.

Our goal is to develop structure-preserving finite

element schemes to numerically solve the Euler-

Poisson equations. By a structure-preserving scheme,

we mean that we wish for our numerical schemes to

preserve discrete versions of certain properties that are

enjoyed by the system at the PDE level (e.g. conserva-

tion of energy, invariant-domain properties, etc.). The

schemes that we present here accomplish such things.

We will discuss some of the algorithmic details and key

structure-preserving properties of the schemes.

The work done here is a first step towards developing

robust numerical methods for the full Euler-Maxwell

system, which accounts for magnetic field effects that

are neglected in the Euler-Poisson system.

Model

The Euler-Poisson equations are

∂tρ+ divm = 0, (1a)

∂tm+ div

(
1

ρ
mmT + Ip

)
= −ρ∇ϕ, (1b)

∂tE + div
(
m

ρ
(E + p)

)
= −∇ϕ ·m, (1c)

−∆ϕ = αρ. (1d)

Here, ρ(t, x) ∈ (0,∞) is the mass density, m(t, x) ∈
Rd is the momentum density, E(t, x) ∈ (0,∞) is
the total energy density, ϕ(t, x) ∈ R is the scalar
potential, p(t, x) ∈ R is the thermodynamic pres-
sure, α ∈ R is the coupling constant, and I ∈ Rd×d
is the identity matrix. The domain of this system is

denoted by [0,∞) × Ω, where Ω ⊂ Rd is a bounded
domain with boundary ∂Ω.

We close the system by assuming that the pressure is

given by the following equation of state that comes

from the ideal gas law:

p = (γ − 1)
(
E −

1

2ρ
|m|2ℓ2

)
with γ = 5/3.

PDE Energy Balance

Formally, system (1) has the following energy balance:

d

dt

∫
Ω

E +
1

2α
|∇ϕ|2ℓ2 dx +

∫
∂Ω

{
m

ρ
(E + p) + ϕ

(
m−

1

α
∂t∇ϕ

)}
· n ds = 0. (2)

We wish to preserve this at the discrete level. To avoid technicalities, we hereby assume that we have prescribed

appropriate boundary conditions to (1) to ensure that the boundary term above vanishes.

Operator Splitting and Finite Element Spaces

We can take the time derivative of equation (1d) and use

(1a) to rewrite (1d) as an evolution equation

∂t∆ϕ = α divm.

Replacing (1d) with this equation allows us to write system

(1) in the form of an operator splitting:

∂tu = div f(u) + g(u, ϕ),

∂t∆ϕ = 0 + α divm,

where u = (ρ,m, E)T,

f(u) =

 mT

1
ρmm

T + Ip
mT

ρ (E + p)

 , g(u, ϕ) =
 0

−ρ∇ϕ
−∇ϕ ·m


We call the first stage in this split the hyperbolic system

and the second stage the source-dominated system. We

will proceed to discretize each system separately to get

partial updates and then combine the two discretizations for

a full update.

For simplicity of exposition, we assume that the spatial do-

main Ω can be meshed by an affine family of triangular

(if d = 2) or tetrahedral (if d = 3) meshes {Th}h>0.

For a given mesh Th, we assume that each physical element
K ∈ Th is mapped by an affine reference transformation
TK : K̂ → K from the reference element.

We now define the following finite element spaces:

Vh = {zh ∈ L2(Ω) : zh ◦ TK ∈ P1(K̂) ∀ K ∈ Th},
Hh = {ωh ∈ C0(Ω) : ωh ◦ TK ∈ P1(K̂) ∀ K ∈ Th},

where P1(K̂) is the space of degree 1 polynomials on K̂.

Now we let {φi}i and {χi}i be nodal bases of Vh and Hh
respectively. With respect to these bases, our approxima-

tions to u, ϕ at time tn are denoted

unh =
∑
i

Uni φi , ϕ
n
h =

∑
i

ϕni χi

with Uni = (ϱ
n
i ,M

n
i , Eni )T.

To obtain some discrete energy balances, we also introduce

the lumped inner product of f, g ∈ [C0(Th)]d to be

⟨f , g⟩ =
∑
K∈Th

∑
k

f (xK,k)g(xK,k)wK,k,

where xK,k = TK(x̂k), wK,k =
∫
K φK,k dx , and φK,k =

φ̂k ◦ T−1K .

Hyperbolic Update

For the hyperbolic subsystem, we use a discretization

technique that was first developed in [2] which relies on

graph viscosity and convex limiting. This gives us the

hyperbolic update (ρnh,m
n
h, Enh )→ (ρn+1h ,m

n+1
h , E

n+1
h ).

The hyperbolic update is robust, high order, and

maintains the right PDE structural properties (con-

servation, invariant domains, entropy inequalities) that

are important to the theory of systems of hyperbolic con-

servation laws. Furthermore, only a hyperbolic CFL

condition on the time-step size τn is needed to guaran-

tee these properties.

Source Update

We first observe that the source-dominated system has

the following formal energy balance:

d

dt

∫
Ω

1

2ρ
|m|2ℓ2 +

1

2α
|∇ϕ|2ℓ2 dx

+

∫
∂Ω

{
ϕ

(
m−

1

α
∂t∇ϕ

)}
· n ds = 0. (3)

We assume that our boundary conditions are such that

the boundary term above is 0. We wish to preserve

this energy balance at the discrete level.

A fully discrete version of the source-dominated system

with a Crank-Nicolson discretization in time is as

follows. Given ρnh, v
n
h, and ϕ

n
h, at time tn, find v

n+1
h and

ϕn+1h at time tn+1 = tn + τn that satisfy

⟨ρnhvn+1h , zh⟩ = ⟨ρ
n
hv
n
h, zh⟩ −

τn
2
⟨ρnh{∇ϕn+1h

+∇ϕnh}, zh⟩,
(4a)

a+τn(ϕ
n+1
h , ωh) = a

−
τn
(ϕnh, ωh) + τnα⟨ρnhvnh,∇ωh⟩, (4b)

for all ωh ∈ Hh and all zh ∈ [Vh]d , where

a±τn(ϕ,ω) = (∇ϕ,∇ω)±
τ2nα

4
(ρnh∇ϕ,∇ω). (5)

After getting vn+1h =
∑
i V
n+1
i φi , we get m

n+1
h =∑

iM
n+1
i φi by setting M

n+1
i = ϱni V

n+1
i .

This system is well-posed, efficient to solve, and the

time-step τn is only subjected to the hyperbolic CFL

condition.

Most importantly, system (4) has the following discrete

energy balance:

1

2

∑
i

ϱni |Vn+1i |
2
ℓ2 +

1

2α
∥∇ϕn+1h ∥

2
L2(Ω)

=
1

2

∑
i

ϱni |Vni |2ℓ2 +
1

2α
∥∇ϕnh∥2L2(Ω).

This is exactly the discrete version of (3) (minus the

boundary term) that we want.

To update the energy, we first observe that the source-

dominated system satisfies

∂t

(
E −

1

2ρ
|m|2ℓ2

)
= 0.

Therefore, after getting mn+1h , we update the energy

En+1h =
∑
i En+1i φi by

En+1i = Eni +
1

2ϱn+1i

(
|Mn+1i |

2
ℓ2 − |M

n
i |2ℓ2

)
. (6)

The source update procedure given by (4) and (6) is

second-order, robust, and structure-preserving.

Full Update Procedure
.

We combine the hyperbolic update with the source update

to get a complete update as follows:

1. Given unh = (ρ
n
h,m

n
h, Enh )T and ϕnh at time tn, compute

the time-step size τn subjected to a hyperbolic CFL

condition and update

unh → un+1,1h = (ρn+1,1h ,mn+1,1h , En+1,1h )T

at time tn+1 = tn + τn via the hyperbolic update.

2. Feed the partial hyperbolic update un+1,1h and ϕnh into

the source update scheme to get the full update

(ρn+1,1h ,mn+1,1h , En+1,1h , ϕnh)→ (ρn+1h ,m
n+1
h , E

n+1
h , ϕ

n+1
h )

The update algorithm given above is a first-order -

Yanenko operator splitting algorithm and was presented

for simplicity. However, one can modify the algorithm to

get a second-order Strang operator splitting algorithm

that still maintains the stability and structure-preserving

properties of the first-order split, but now is also high

order.

The schemes presented here use affine triangular meshes

and P1 elements for simplicity of exposition, but they can
be extended to asymptotically affine families of quadrilat-

eral meshes with Q1 elements [3]. Only minimal changes
to the algorithm are necessary.

This full update procedure maintains the following discrete energy balance:∑
i

miEn+1i +
1

2α
∥∇ϕn+1h ∥

2
L2(Ω) =

∑
i

miEni +
1

2α
∥∇ϕnh∥2L2(Ω),

which is exactly a discrete counterpart to the PDE energy balance (2) (minus the boundary term) that we were hoping

to preserve. Therefore, under a hyperbolic CFL condition, the scheme above is stable and structure-preserving.

Numerical Illustration: Electrostatic Implosion

To numerically test our method, we consider an electro-

static implosion configuration in a circular domain

Ω = {x ∈ R2 : |x |ℓ2 ≤ r3} of radius r3 = 16, with bound-
ary conditions m · n = 0 and ϕ = 0 on ∂Ω and coupling
constant α = 103. The initial state is as follows: the den-

sity ρ is initially ρ(x) = 10001 if r1 = 4 ≤ |x |ℓ2 ≤ 6 = r2
and ρ(x) = 1 otherwise, the velocity v0 = 0 uniformly,

and the pressure p0 = 10
−4 uniformly. The final time is set

to tF = (3/64)tP where tP = 2π/ωp and ωp =
√
103.

The geometric setup is similar to considering a config-

uration with two concentric cylindrical electrodes, with

the outer electrode grounded and the inner electrode hav-

ing a very high positive voltage pulling the electron gas

inwards. As the gas is accelerated towards the center,

a cylindrical outer region with very low density and low

pressure is left behind. Such a configuration is known to

be hydrodynamically highly unstable, so this is an

excellent test to see if our scheme can work in the shock

hydrodynamics regime. The computation was carried

out in deal.II [1] with approximately 1M quadrilaterals.

The figure below shows various snapshots in time of the

schlieren plot of the density, which shows that our scheme

appears to accurately capture the dynamics of the system.

t = tF/16 t = tF/8 t = 2tF/8

t = 3tF/8 t = 4tF/8 t = 5tF/8

t = 6tF/8 t = 7tF/8 t = tF

Outlook
.

The schemes presented here give us a robust, high

order, structure-preserving numerical discretization

of the Euler-Poisson equations that work for triangular,

quadrilateral, or hexagonal families of meshes, both affine

and asymptotically affine. The structure-preserving prop-

erties of these schemes are provably verified, and their

accuracy and efficiency are demonstrated through various

numerical numerical tests which can be found in [3].

The Euler-Poisson equations themselves can be thought of

as the electrostatic limit of the larger Euler-Maxwell

equations:

∂tρ+ divm = 0,

∂tm+ div

(
1

ρ
mmT + Ip

)
= −ρ(∇ϕ+ ∂tA)

+m× curlA,

∂tE + div
(
m

ρ
(E + p)

)
= −(∇ϕ+ ∂tA) ·m,

−∆ϕ− ∂t divA = αρ,
1

c2
∂t∇ϕ+

1

c2
∂2tA+ curl

2A =
α

c2
m

Here, ϕ is the electric potential and A is the magnetic

potential. Our goal in a future publication is to ex-

tend our methods to the Euler-Maxwell equations.
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