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Problem 1

Let T be the unit triangle in R2 with vertices v1 = (0, 0), v2 = (1, 0), and
v3 = (0, 1). Denote the edges of T as e1 = v1v2, e2 = v2v3, and e3 = v3v1.
Let zi be the midpoint of edge ei, and let t⃗i be the counterclockwise pointing
unit vector tangent to ∂T on ei. Let TW0 be the space of all vector-valued
functions p⃗ : T → R2 of the form p⃗(x, y) = (a− cy, b+ cx) for some a, b, c ∈ R.
Then P2

0 ⊂ TW0 ⊂ P2
1. Let σi : TW0 → R be defined by σi(p⃗) = p⃗(zi) · t⃗i for

i ∈ {1, 2, 3} and p⃗ ∈ TW0, and let Σ = {σ1, σ2, σ3}.

Part a

Show that (T, TW0,Σ) is a finite element triple.

Proof. Following Definition 5.2 in Ern and Guermond [1], it suffices to show
that, given an arbitrary p⃗ ∈ TW0, if σi(p⃗) = 0 for each i, then p⃗ = 0⃗. Since
p⃗ ∈ TW0, there are a, b, c ∈ R such that p⃗(x, y) = (a − cy, b + cx) for each
(x, y) ∈ T . Then since z1 = (1/2, 0) and t⃗1 = (1, 0), we have that

σ1(p⃗) = p⃗(1/2, 0) · (1, 0) = (a, b+ c/2) · (1, 0) = a = 0.

Similarly, since z3 = (0, 1/2) and t⃗3 = (0,−1), we have that

σ3(p⃗) = p⃗(0, 1/2) · (0,−1) = (a− c/2, b) · (0,−1) = −b = 0.

Finally, since z2 = (1/2, 1/2) and t⃗2 = (−1, 1)/
√
2, we have that

σ2(p⃗) = p⃗(1/2, 1/2) · (−1, 1)/
√
2 = (a− c/2, b+ c/2) · (−1, 1)/

√
2

= (b+ c− a)/
√
2 = 0.

Thus a, b, c satisfy the linear system

a = 0,

b = 0,

−a+ b+ c = 0,

which implies a = b = c = 0. This in turn implies p⃗ = 0⃗, which completes the
proof.
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Part b

Find a basis {φ⃗1, φ⃗2, φ⃗3} of TW0 that is dual to Σ. That is, σi(φ⃗j) = δij with
δij = 0 if i ̸= j and δij = 1 if i = j.

Proof. Since each φ⃗i ∈ TW0, there are ai, bi, ci ∈ R such that φ⃗i(x, y) = (ai −
ciy, bi + cix) for all (x, y) ∈ T . Reusing some of the computations from the
previous part then tells us that

σ1(φ⃗i) = ai = δi1,

σ3(φ⃗i) = −bi = δi3,

σ2(φ⃗i) = (bi + ci − ai)/
√
2 = δi2.

Solving these explicitly for ai, bi, and ci gives us

φ⃗1(x, y) = (1− y, x),

φ⃗2(x, y) =
√
2(−y, x),

φ⃗3(x, y) = (y, x− 1)

for all (x, y) ∈ T .

Part c

Let (Πu⃗)(x, y) =
∑3

i=1 σi(u⃗)φ⃗i(x, y) for (x, y) ∈ T and u⃗ ∈ H2(T )2. Show that
there exists C > 0 such that

∥u⃗−Πu⃗∥L2(T )2 ≤ C(|u⃗|H1(T )2 + |u⃗|H2(T )2)

for all u⃗ ∈ H2(T )2. You can use standard analysis results like trace, Sobolev,
Poincaré inequalities and the Bramble-Hilbert Lemma without proof, but state
precisely which results you are using.

Proof. We follow part of an argument from Theorem 11.13 in Ern and Guer-
mond [1] adapted to this special case. We will make use of the Sobolev Embed-
ding Theorem (Theorem 2.31 in Ern and Guermond [1]) as well as a Poincaré
inequality found in Lemma 3.24 of Ern and Guermond [1]. We will explicitly
restate these results as needed.

We first observe that for any p⃗ ∈ TW0, Πp⃗ = p⃗. Indeed, this follows from
the previous two parts, since any p⃗ ∈ TW0 can be expanded in the basis φ⃗i with
its coefficients given by σi(p⃗). In other words, TW0 is pointwise invariant under
Π.

Next, we recall the following Sobolev inequality which states that H2(T )2

continuously embeds into C0(T )2, which is a consequence of Theorem 2.31 in
Ern and Guermond [1]. Therefore, there is a constant C0 > 0 such that

max
(x,y)∈T

|v⃗(x, y)| ≤ C0∥v⃗∥H2(T )2 (1)
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for all v⃗ ∈ H2(T )2. In particular, this implies that functions in H2(T )2 are
continuous and bounded on T , and that

|v⃗(zi)| ≤ C0∥v⃗∥H2(T )2 (2)

for all v⃗ ∈ H2(T )2.
Next, we show that there is a constant C1 > 0 such that

∥v⃗ −Πv⃗∥L2(T )2 ≤ C1∥v⃗∥H2(T )2 (3)

for all v⃗ ∈ H2(T )2. For this, we have that

∥v⃗ −Πv⃗∥L2(T )2 ≤ ∥v⃗∥L2(T )2 + ∥Πv⃗∥L2(T )2 ,

≤ ∥v⃗∥H2(T )2 +

3∑
i=1

|σi(v⃗)|∥φ⃗i∥L2(T )2

≤ ∥v⃗∥H2(T )2 + (max
i

∥φ⃗i∥L2(T )2)
∑
i

|v⃗(zi) · t⃗i|

≤ ∥v⃗∥H2(T )2 + (max
i

∥φ⃗i∥L2(T )2) (max
i

|⃗ti|)︸ ︷︷ ︸
=1

∑
i

|v⃗(zi)|

≤ (1 + 3C0 max
i

∥φ⃗i∥L2(T )2)∥v⃗∥H2(T )2 ,

where in the first and second lines we used the triangle inequality, in the 4th line
we used Cauchy-Schwarz, and in the last line we used the Sobolev inequality
(2) from above. This shows the claim with C1 = 1 + 3C0 maxi ∥φ⃗i∥L2(T )2 .

Now let u⃗ ∈ H2(T )2 be arbitrary and let p⃗ ∈ P2
0. Set v⃗ = u⃗ − p⃗. Since

p⃗ ∈ P2
0 ⊂ TW0 and TW0 is pointwise invariant under Π, we have that Πp⃗ = p⃗.

Then Πv⃗ = Πu⃗−Πp⃗ = Πu⃗− p⃗, so that

v⃗ −Πv⃗ = u⃗− p⃗− (Πu⃗− p⃗) = u⃗−Πu⃗.

Therefore, we apply the previous claim (3) to v⃗ and get

∥u⃗−Πu⃗∥L2(T )2 = ∥v⃗ −Πv⃗∥L2(T )2 ≤ C1∥v⃗∥H2(T )2 = C1∥u⃗− p⃗∥H2(T )2 . (4)

Since p⃗ ∈ P2
0, we have that

∥u⃗− p⃗∥2H2(T )2 = ∥u⃗− p⃗∥2L2(T )2 + |u⃗|2H1(T )2 + |u⃗|2H2(T )2 ,

so that
∥u⃗− p⃗∥H2(T )2 ≤ ∥u⃗− p⃗∥L2(T )2 + |u⃗|H1(T )2 + |u⃗|H2(T )2 . (5)

Combining this with the previous inequality (4) gives us

∥u⃗−Πu⃗∥L2(T )2 ≤ C1∥u⃗− p⃗∥L2(T )2 + C1(|u⃗|H1(T )2 + |u⃗|H2(T )2) (6)

for all u⃗ ∈ H2(T )2 and any p⃗ ∈ P2
0.
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Now we recall the Poincaré inequality, which states that there is a constant
C2 > 0 such that

∥u⃗− u⃗∥L2(T )2 ≤ C2|u⃗|H1(T )2

for all u⃗ ∈ H2(T )2, where

u⃗ =
1

|T |

∫
T

u⃗(x, y) dx dy

is the average of u⃗ over T , which belongs to P2
0. Therefore, by taking p⃗ = u⃗ in

the previous inequality (6) and using the Poincaré inequality, we have that

∥u⃗−Πu⃗∥ ≤ C1C2|u⃗|H1(T )2 + C1(|u⃗|H1(T )2 + |u⃗|H2(T )2)

≤ C(|u⃗|H1(T )2 + |u⃗|H2(T )2)

where C = C1(C2 + 1) is independent of u⃗ ∈ H2(T )2. Since u⃗ is arbitrary, we
are done.
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