2024 January Numerical Analysis Qualifer
Solutions

Jordan Hoffart

Problem 1

Let T be the unit triangle in R? with vertices v; = (0,0), v = (1,0), and
vs = (0,1). Denote the edges of T as e; = vjva, ez = vaus, and ez = v3v;.
Let z; be the midpoint of edge e;, and let f; be the counterclockwise pointing
unit vector tangent to 97 on e;. Let TW, be the space of all vector-valued
functions p: T — R? of the form p(x,y) = (a — cy, b+ cx) for some a,b,c € R.
Then P3 ¢ TW,y C P?. Let o; : TWy — R be defined by o;(p) = p(z) - t; for
i €{1,2,3} and p'€ TWy, and let ¥ = {01, 02,03}.

Part a

Show that (T, TWy,X) is a finite element triple.

Proof. Following Definition 5.2 in Ern and Guermond [1], it suffices to show
that, given an arbitrary p € TWy, if 0;(p) = 0 for each 4, then p = 0. Since
p € TWy, there are a,b,c € R such that p(z,y) = (a — cy,b + cx) for each
(z,y) € T. Then since z; = (1/2,0) and #; = (1,0), we have that

o1(p) = p(1/2,0) - (1,0) = (a,b+¢/2) - (1,0) = a = 0.
Similarly, since z3 = (0,1/2) and #3 = (0, —1), we have that
o3(p) = p(0,1/2) - (0,—1) = (a — ¢/2,b) - (0,—1) = =b = 0.
Finally, since zp = (1/2,1/2) and #, = (—1,1)/1/2, we have that
o2 (p) = 5(1/2,1/2) - (=1,1)/V2 = (a — ¢/2,b+¢/2) - (=1,1)/V2
=(b+c—a)/V2=0.

Thus a, b, ¢ satisfy the linear system

a =0,
b=0,
—a+b+c=0,

which implies @ = b = ¢ = 0. This in turn implies 7 = 0, which completes the
proof. U



Part b

Find a basis {1, P2, P3} of TWy that is dual to X. That is, 0;(F;) = d;; with

Proof. Since each @; € TW,, there are a;, b;, ¢c; € R such that ;(z,y) = (a; —
¢iy,b; + ¢;x) for all (z,y) € T. Reusing some of the computations from the
previous part then tells us that

01(Fi) = a; = 6,1,
03(Pi) = —b; = i3,
oo(Bi) = (b + ¢; — a;)/V2 = dia.

[

Solving these explicitly for a;, b;, and ¢; gives us

ﬁl(xay) = (1 - yax)y

952(33,19) = ﬁ(—y,l‘),

_‘3(1.73/) = (y7m - ]-)
for all (z,y) € T. O
Part c

Let (II%0)(z,y) = Z?:l oi(@)@i(z,y) for (x,y) € T and @ € H?(T)?. Show that
there exists C' > 0 such that

[ — Iai]| 2(ry2 < C(lt] 2 (ry2 + [t 12 (1)2)

for all @ € H?(T)?. You can use standard analysis results like trace, Sobolev,
Poincaré inequalities and the Bramble-Hilbert Lemma without proof, but state
precisely which results you are using.

Proof. We follow part of an argument from Theorem 11.13 in Ern and Guer-
mond [1] adapted to this special case. We will make use of the Sobolev Embed-
ding Theorem (Theorem 2.31 in Ern and Guermond [1]) as well as a Poincaré
inequality found in Lemma 3.24 of Ern and Guermond [1]. We will explicitly
restate these results as needed.

We first observe that for any p' € TW,, IIp' = p. Indeed, this follows from
the previous two parts, since any p'€ TW, can be expanded in the basis @; with
its coefficients given by o;(p). In other words, TWj is pointwise invariant under
I1.

Next, we recall the following Sobolev inequality which states that H?(T)?
continuously embeds into C°(T)?, which is a consequence of Theorem 2.31 in
Ern and Guermond [1]. Therefore, there is a constant Cy > 0 such that

2 < Cyl|v 1
s [7w.9)] < Colllay: (1)



for all ¥ € H?(T)?. In particular, this implies that functions in H?(T)? are
continuous and bounded on T, and that

[U(z:)| < Col| V]| a2(1)2 (2)
for all 7 € H?(T)2.
Next, we show that there is a constant C; > 0 such that
|0 — 19| 2 (72 < Chl|0]| 2 ()2 (3)

for all @ € H?(T)?. For this, we have that

|0 = (| 2(ry2 < ([0l L2(ry2 + ([H0] 272,
3

<@y + Y Lo @Gl 2y
=1

< 18l rye + (max [ Gill ) 3 19(zs) -

< N1 rr2(ry2 + (max |Gl z2cryz) (max |£3]) Y 15(2:)]

N—_—— &
=1

< (1+3Co max @il () |Vl 2 ()2 5

where in the first and second lines we used the triangle inequality, in the 4th line
we used Cauchy-Schwarz, and in the last line we used the Sobolev inequality
(2) from above. This shows the claim with Cy = 14 3Co max; || Z;| 2 (1)2-

Now let @ € H?(T)? be arbitrary and let 5 € P3. Set ¥ = @ — . Since
p € P2 C TWy and TW, is pointwise invariant under IT, we have that IIj = p.
Then II7 = II@ — IIp = IId — P, so that

t—Ilt=u—p— (Ild —p) =u—1a.
Therefore, we apply the previous claim (3) to ¥ and get
i@ — Tidl| p2(ry2 = [|0 = ]| p2(ry2 < Cul|T]|m2(ry2 = Cilld@ — Pllmz(ryz. (4)

Since p’ € P3, we have that

1@ — Bllr2(ry2 = 1T = Dl T2z + 1@lF0 ()2 + |lFr ()2,
so that

Hﬂ: - ﬁHH2(T)2 < Hﬂ - ﬁ”LZ(T)? —+ |ﬁ|H1(T)2 —+ |'J|H2(T)2- (5)
Combining this with the previous inequality (4) gives us

||’l_l: - Hﬁ||L2(T)2 < Cl||7._[ — ﬁ”LQ(T)? + Cl(|ﬁ|H1(T)2 + |ﬁ|H2(T)2> (6)

for all @ € H*(T)? and any j € P3.



Now we recall the Poincaré inequality, which states that there is a constant

C5 > 0 such that
@ — @l 2(ry2 < Coltl] (12

for all @ € H%(T)?, where
1= [ ) ded
U= = [ ulz,y)aray
Tl Jr

is the average of i over T, which belongs to P3. Therefore, by taking 7 = @ in
the previous inequality (6) and using the Poincaré inequality, we have that
||17:7 Hﬁ” < 0102‘7-_[|H1(T)2 + Cl(|ﬁ|H1(T)2 + |ﬁ|H2(T)2)
< C(lul g (ry2 + U] g2 (1y2)

where C = C1(Cy + 1) is independent of @ € H?(T)?. Since @ is arbitrary, we
O

are done.
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