Towards an involution-preserving solver for the time-dependent Maxwell equations

Jordan Hoffart
Department of Mathematics
Texas A\&M University

Acknowledgements

- Alexandre Ern (CERMICS, Ecole des Ponts, and INRIA)
- Jean-Luc Guermond (Texas A\&M University)
- Matthias Maier (Texas A\&M University)

Maxwell's equations and the related eigenvalue problem

Setting

- Open bounded Lipschitz polyhedron D in \mathbb{R}^{3} with outward normal \boldsymbol{n}_{D}
- Magnetic field $\boldsymbol{B}(\boldsymbol{x}, t)$, electric field $\boldsymbol{E}(\boldsymbol{x}, t)$ on D
- No charges or currents; uniform material properties

Maxwell's equations with their involutions

$$
\begin{array}{ll}
\partial_{t} \boldsymbol{B}=-\nabla \times \boldsymbol{E} & \nabla \cdot \boldsymbol{B}=0 \\
\partial_{t} \boldsymbol{E}=\nabla \times \boldsymbol{B} & \nabla \cdot \boldsymbol{E}=0
\end{array}
$$

Maxwell eigenvalue system in first-order form vs second-order form

$$
\begin{aligned}
-\nabla \times \boldsymbol{E} & =\lambda \boldsymbol{B} \\
\nabla \times \boldsymbol{B} & =\lambda \boldsymbol{E}
\end{aligned}
$$

Goal Spectrally correct dG approximation of the first-order system

Theory

Precise formulation of the eigenvalue problem

Function spaces

$$
\begin{aligned}
\boldsymbol{L}^{2}(D) & :=\left\{\text { square integrable functions from } D \text { to } \mathbb{C}^{3}\right\} \\
\boldsymbol{H}(\text { curl, } D) & :=\left\{\boldsymbol{E} \in \boldsymbol{L}^{2}(D) \text { with } \nabla \times \boldsymbol{E} \in \boldsymbol{L}^{2}(D)\right\} \\
\boldsymbol{H}_{0}(\text { curl }, D) & :=\left\{\boldsymbol{B} \in \boldsymbol{H}(\text { curl, } D) \text { with } \boldsymbol{B} \times \boldsymbol{n}_{D}=\mathbf{0}\right\} \\
\boldsymbol{H}^{c}(D) & :=\boldsymbol{H}_{0}(\text { curl, } D) \times \boldsymbol{H}(\text { curl, } D)
\end{aligned}
$$

Curl operators that are adjoint to eachother

$$
\nabla \times: H(\operatorname{curl}, D) \rightarrow \boldsymbol{L}^{2}(D) \quad \nabla_{0} \times: \boldsymbol{H}_{0}(\operatorname{curl}, D) \rightarrow \boldsymbol{L}^{2}(D)
$$

Eigenvalue problem Find all $\lambda \in \mathbb{C} \backslash\{0\},(\boldsymbol{B}, \boldsymbol{E}) \in \boldsymbol{H}^{c}(D) \backslash\{(\mathbf{0}, \mathbf{0})\}$ such that

$$
-\nabla \times \boldsymbol{E}=\lambda \boldsymbol{B} \quad \nabla_{0} \times \boldsymbol{B}=\lambda \boldsymbol{E}
$$

Question Is the problem well-posed?

Formulating the involutions as orthogonality conditions

Observation

$$
\begin{aligned}
-\nabla \times \boldsymbol{E} & =\lambda \boldsymbol{B} \\
\nabla_{0} \times \boldsymbol{B} & =\lambda \boldsymbol{E}
\end{aligned} \quad \Rightarrow \quad \boldsymbol{B} \in \operatorname{im}(\nabla \times) \quad \Rightarrow \quad \begin{aligned}
& \nabla \cdot \boldsymbol{B}=0 \\
& \boldsymbol{E} \in \operatorname{im}\left(\nabla_{0} \times\right)
\end{aligned} \quad \Rightarrow \quad \boldsymbol{E}=0
$$

Lemma (Ern, Guermond)

$$
\boldsymbol{B} \in \operatorname{im}(\nabla \times) \Leftrightarrow \boldsymbol{B} \perp_{\boldsymbol{L}^{2}(D)}^{\underbrace{\operatorname{ker}\left(\nabla_{0} \times\right)}_{\boldsymbol{H}_{0}(\text { curl }=\mathbf{0}, D)}} \quad \boldsymbol{E} \in \operatorname{im}\left(\nabla_{0} \times\right) \Leftrightarrow \boldsymbol{E} \perp_{\boldsymbol{L}^{2}(D)} \underbrace{\operatorname{ker}(\nabla \times)}_{\boldsymbol{H}(\text { curl }=\mathbf{0}, D)}
$$

Definition (Involutions)

$$
\boldsymbol{B} \in \boldsymbol{H}_{0}(\mathrm{curl}=\mathbf{0}, D)^{\perp_{L^{2}(D)}} \quad \boldsymbol{E} \in \boldsymbol{H}(\mathrm{curl}=\mathbf{0}, D)^{\perp_{L^{2}(D)}}
$$

Formulating a related boundary value problem

Idea
Formulate a well-posed boundary value problem with compact solution operator whose spectrum coincides with solutions to the eigenvalue problem

Orthogonal projections onto the kernels

$$
\boldsymbol{\Pi}^{c}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0}, D) \quad \boldsymbol{\Pi}_{0}^{c}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0}, D)
$$

Observation

$$
\begin{aligned}
-\nabla \times \boldsymbol{E} & =\lambda \boldsymbol{B} \\
\nabla_{0} \times \boldsymbol{B} & =\lambda \boldsymbol{E}
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& \boldsymbol{\Pi}_{0}^{c} \boldsymbol{B}=\mathbf{0} \\
& \boldsymbol{\Pi}^{c} \boldsymbol{E}=\mathbf{0}
\end{aligned} \Leftrightarrow \quad \Leftrightarrow \quad \boldsymbol{B}=\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{c}\right) \boldsymbol{B}, ~\left(\boldsymbol{I}=\left(\boldsymbol{\Pi}^{c}\right) \boldsymbol{E}\right.
$$

Boundary value problem
Given $\boldsymbol{f}, \boldsymbol{g} \in \boldsymbol{L}^{2}(D)$, find $\boldsymbol{B} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, D), \boldsymbol{E} \in \boldsymbol{H}(\mathbf{c u r l}, D)$ such that

$$
\begin{aligned}
-\nabla \times \boldsymbol{E} & =\left(\boldsymbol{I}-\boldsymbol{\Pi}_{0}^{c}\right) \boldsymbol{f} & & \boldsymbol{\Pi}^{c} \boldsymbol{E}=\mathbf{0} \\
\nabla_{0} \times \boldsymbol{B} & =\left(\boldsymbol{I}-\boldsymbol{\Pi}^{c}\right) \boldsymbol{g} & & \boldsymbol{\Pi}_{0}^{c} \boldsymbol{B}=\mathbf{0}
\end{aligned}
$$

Well-posedness of the eigenvalue problem

Lemma (Ern, Guermond)

Let $\boldsymbol{L}^{c}(D)=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D)$ and let $\boldsymbol{H}^{c}(D)=\boldsymbol{H}_{0}($ curl, $D) \times \boldsymbol{H}($ curl,$D)$. The boundary value problem is well-posed and the solution operator

$$
(\boldsymbol{f}, \boldsymbol{g}) \in \boldsymbol{L}^{c}(D) \mapsto T(\boldsymbol{f}, \boldsymbol{g}):=(\boldsymbol{B}, \boldsymbol{E}) \in \boldsymbol{H}^{c}(D) \hookrightarrow \boldsymbol{L}^{c}(D)
$$

is compact.

Lemma (Ern, Guermond)

If $(\mu \neq 0,(\boldsymbol{B}, \boldsymbol{E}))$ is an eigenpair of T, then $(\lambda:=1 / \mu,(\boldsymbol{B}, \boldsymbol{E}))$ solves the eigenvalue problem.
Conversely, if $(\lambda \neq 0,(\boldsymbol{B}, \boldsymbol{E}))$ solves the eigenvalue problem, then $(\mu:=1 / \lambda,(\boldsymbol{B}, \boldsymbol{E}))$ is an eigenpair of T.

Discrete setting

Goal Approximate the spectrum of T.
Triangulations Shape-regular family of affine simplicial meshes $\left(\mathcal{T}_{h}\right)_{n}$ that cover D Mesh faces $\mathcal{F}_{h}=\left(\right.$ interior faces $\left.\mathcal{F}_{h}^{\circ}\right) \cup\left(\right.$ boundary faces $\left.\mathcal{F}_{h}^{\partial}\right)$

Interfaces

For each interface $F \in \mathcal{F}_{h}^{\circ}$

- The two cells $K_{l, F}, K_{r, F}$ that share F
- Unit normal \boldsymbol{n}_{F} on F pointing from $K_{l, F}$ to $K_{r, F}$
- Jump and average across F

$$
\left[\boldsymbol{v}_{h}\right]_{F}:=\left.\boldsymbol{v}_{h}\right|_{K_{l, F}}-\left.\boldsymbol{v}_{h}\right|_{K_{r, F}} \quad\left\{\left\{\boldsymbol{v}_{h}\right\}\right\}_{F}:=\frac{\left.\boldsymbol{v}_{h}\right|_{K_{l, F}}+\left.\boldsymbol{v}_{h}\right|_{K_{r, F}}}{2}
$$

Polynomial spaces $\mathbb{P}_{k}:=\{$ polynomials in 3 variables of degree at most $k\}$
Discrete spaces

$$
\boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right):=\left\{\boldsymbol{v}_{h} \in \boldsymbol{L}^{2}(D):\left.\boldsymbol{v}_{h}\right|_{k} \in \mathbb{P}_{k}^{3} \text { for all } K \in \mathcal{T}_{h}\right\} \quad \boldsymbol{L}_{h}^{c}:=\boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)
$$

Discrete curls and fluxes

Discrete curl

$$
\begin{aligned}
&\left(\nabla_{h} \times \boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right)_{L^{2}(D)}:=\sum_{K \in \mathcal{T}_{h}}\left(\nabla \times\left(\left.\boldsymbol{e}_{h}\right|_{K}\right),\left.\boldsymbol{b}_{h}\right|_{K}\right)_{\boldsymbol{L}^{2}(K)} \\
&\left(=\left(\nabla \times \boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right)_{\boldsymbol{L}^{2}(D)} \text { if } \boldsymbol{e}_{h} \in \boldsymbol{H}(\text { curl, } D)\right)
\end{aligned}
$$

Discrete fluxes

$$
\begin{aligned}
& f_{h}^{\circ}\left(\boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right):=\sum_{F \in \mathcal{F}_{h}^{\circ}}\left(\left[\boldsymbol{e}_{h}\right]_{F} \times \boldsymbol{n}_{F},\left\{\left\{\boldsymbol{b}_{h}\right\}\right\}\right)_{\boldsymbol{L}^{2}(F)} \quad\left(=0 \text { if } \boldsymbol{e}_{h} \in \boldsymbol{H}(\mathbf{c u r l}, D)\right) \\
& f_{h}\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right):=f_{h}^{\circ}\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)+\sum_{F \in \mathcal{F}_{h}^{\partial}}\left(\boldsymbol{b}_{h} \times \boldsymbol{n}_{F}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}(F)} \quad\left(=0 \text { if } \boldsymbol{b}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, D)\right)
\end{aligned}
$$

Consistency Terms

Consistency terms

$$
\begin{aligned}
C_{h}\left(\boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right) & :=\left(\nabla_{h} \times \boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right)_{L^{2}(D)}+f_{h}^{\circ}\left(\boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right) \\
C_{h 0}\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right): & :\left(\nabla_{h} \times \boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)_{L^{2}(D)}+f_{h}\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)
\end{aligned}
$$

Lemma (Consistency and adjoints)

When $\boldsymbol{e}_{h} \in \boldsymbol{H}(\operatorname{curl}, D)$ and $\boldsymbol{b}_{h} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, D)$,

$$
\begin{aligned}
C_{h}\left(\boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right) & =\left(\nabla \times \boldsymbol{e}_{h}, \boldsymbol{b}_{h}\right)_{L^{2}(D)} \\
C_{h 0}\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right) & =\left(\nabla 0 \times \boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)_{L^{2}(D)}
\end{aligned}
$$

For general $\boldsymbol{b}_{h}, \boldsymbol{e}_{h}$,

$$
C_{h}\left(\boldsymbol{e}_{h}, \boldsymbol{b}_{n}\right)^{*}:=\overline{C_{h}\left(\boldsymbol{b}_{n}, \boldsymbol{e}_{h}\right)}=C_{h 0}\left(\boldsymbol{b}_{n}, \boldsymbol{e}_{h}\right)
$$

Penalty terms

Penalize tangential jumps

$$
s_{h}^{\circ}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right):=\sum_{F \in \mathcal{F}_{h}^{\circ}}\left(\left[\boldsymbol{E}_{h}\right]_{F} \times \boldsymbol{n}_{F},\left[\boldsymbol{e}_{h}\right]_{F} \times \boldsymbol{n}_{F}\right)_{\boldsymbol{L}^{2}(F)}
$$

Weakly enforce the boundary condition

$$
s_{h}\left(\boldsymbol{B}_{h}, \boldsymbol{b}_{h}\right):=s_{h}^{\circ}\left(\boldsymbol{B}_{h}, \boldsymbol{b}_{h}\right)+\sum_{F \in \mathcal{F}_{h}^{\partial}}\left(\boldsymbol{B}_{h} \times \boldsymbol{n}_{F}, \boldsymbol{b}_{h} \times \boldsymbol{n}_{F}\right)_{\boldsymbol{L}^{2}(F)}
$$

Lemma

If $\boldsymbol{E}_{h} \in \boldsymbol{H}(\mathbf{c u r l}, D)$, then

$$
s_{h}^{\circ}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)=0
$$

Similarly, if $\boldsymbol{B}_{n} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, D)$, then

$$
s_{h}\left(\boldsymbol{B}_{h}, \boldsymbol{b}_{n}\right)=0 .
$$

Discrete involutions

Involutions

$$
\begin{array}{rr}
\boldsymbol{B} \perp_{\boldsymbol{L}^{2}(D)} \boldsymbol{H}_{0}(\text { curl }=\mathbf{0}, D) & \boldsymbol{E} \perp_{\boldsymbol{L}^{2}(D)} \boldsymbol{H}(\text { curl }=\mathbf{0}, D) \\
\boldsymbol{\Pi}_{0}^{c}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}_{0}(\text { curl }=\mathbf{0}, D) & \boldsymbol{\Pi}^{c}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{H}(\text { curl }=\mathbf{0}, D) \\
\boldsymbol{\Pi}_{0}^{c} \boldsymbol{B}=\mathbf{0} & \boldsymbol{\Pi}^{c} \boldsymbol{E}=\mathbf{0}
\end{array}
$$

Discrete involutions

$$
\begin{array}{r}
\boldsymbol{B}_{h} \perp_{\mathbf{L}^{2}(D)} \overbrace{\boldsymbol{H}_{0}(\text { curl }=\mathbf{0}, D) \cap \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)}^{\boldsymbol{P}_{k 0}^{c}\left(\text { curl }=\mathbf{0}, \mathcal{T}_{h}\right)} \\
\boldsymbol{\Pi}_{h 0}^{c}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k 0}^{c}\left(\mathbf{c u r l}=\mathbf{0}, \mathcal{T}_{h}\right) \\
\boldsymbol{\Pi}_{h 0}^{c} \boldsymbol{B}_{h}=\mathbf{0}
\end{array}
$$

$$
\begin{array}{r}
\boldsymbol{E}_{h} \perp_{\mathbf{L}^{2}(D)} \overbrace{\boldsymbol{H}(\text { curl }=\mathbf{0}, D) \cap \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)}^{\boldsymbol{P}_{k}^{c}\left(\text { curt }=\mathbf{0}, \mathcal{T}_{n}\right)} \\
\boldsymbol{\Pi}_{h}^{c}: \boldsymbol{L}^{2}(D) \rightarrow \boldsymbol{P}_{k}^{c}\left(\operatorname{curL}=\mathbf{0}, \mathcal{T}_{h}\right) \\
\boldsymbol{\Pi}_{h}^{c} \boldsymbol{E}_{h}=\mathbf{0}
\end{array}
$$

Discontinuous Galerkin formulation

Sesquilinear form

$$
\begin{aligned}
a_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)\right)=C_{h 0}\left(\boldsymbol{B}_{h}, \boldsymbol{e}_{h}\right)-C_{h}\left(\boldsymbol{E}_{h}, \boldsymbol{b}_{h}\right) & +s_{h}\left(\boldsymbol{B}_{h}, \boldsymbol{b}_{h}\right)+s_{h}^{\circ}\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right) \\
& +\left(\boldsymbol{\Pi}_{h 0}^{c} \boldsymbol{B}_{h}, \boldsymbol{b}_{h}\right) L_{L^{2}(D)}+\left(\boldsymbol{\Pi}_{h}^{c} \boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}(D)}
\end{aligned}
$$

Discrete eigenvalue problem
Find $\lambda_{h} \in \mathbb{C} \backslash\{0\},\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right) \in \boldsymbol{L}_{h}^{c} \backslash\{(\mathbf{0}, \mathbf{0})\}$ such that

$$
a_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)\right)=\lambda_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{b}_{h}\right)_{L^{2}(D)}+\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{L^{2}(D)}\right)
$$

for $\operatorname{all}\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right) \in \boldsymbol{L}_{h}^{c}$.
Discrete boundary value problem
Given $\boldsymbol{f}, \boldsymbol{g} \in \boldsymbol{L}^{2}(D)$, find $\boldsymbol{B}_{h}, \boldsymbol{E}_{h} \in \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)$ such that

$$
a_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{b}_{n}, \boldsymbol{e}_{h}\right)\right)=\left(\left(\boldsymbol{I}-\boldsymbol{\Pi}_{h 0}^{c}\right) \boldsymbol{f}, \boldsymbol{b}_{h}\right)_{\boldsymbol{L}^{2}(D)}+\left(\left(\boldsymbol{I}-\boldsymbol{\Pi}_{h}^{c}\right) \boldsymbol{g}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}(D)}
$$

for all $\boldsymbol{b}_{h}, \boldsymbol{e}_{h} \in \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)$.

Well-posedness of the discrete eigenvalue problem

Lemma (Ern, Guermond)

Let $\boldsymbol{L}^{c}(D)=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D)$ and Let $\mathbf{L}_{h}^{c}=\boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right) \times \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)$. The discrete boundary value problem is well-posed, and the solution operator

$$
T_{h}: \boldsymbol{L}^{c}(D) \rightarrow \mathbf{L}_{h}^{c} \hookrightarrow \mathbf{L}^{c}(D)
$$

is compact.

Lemma (Ern, Guermond)

If $\left(\mu_{h} \neq 0,\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right)\right)$ is an eigenpair of T_{h}, then $\left(\lambda_{h}:=1 / \mu_{h},\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right)\right)$ solves the discrete eigenvalue problem.
Conversely, if $\left(\lambda_{h} \neq 0,\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right)\right)$ solves the discrete eigenvalue problem, then ($\mu_{h}:=1 / \lambda_{h},\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right)$) is an eigenpair of T_{h}.

The dG approximation is spectrally correct

Theorem (Ern, Guermond)

There exists $\sigma \in(0,1 / 2)$ and a constant $C>0$ such that

$$
\left\|T-T_{h}\right\|_{L^{2}(D) \times L^{2}(D)} \leq C h^{\sigma}
$$

for all h.

Corollary

The discrete eigenvalue problem is a spectrally correct approximation of the continuous eigenvalue problem.
That is,
(1) the discrete eigenvalues converge to the continuous eigenvalues with the correct multiplicities,
(2) the discrete eigenspaces converge to the continuous eigenspaces, and

3 there are no spurious eigenvalues or eigenfunctions.

Numerics

The discrete projections do not have to be implemented

Lemma (Ern, Guermond 2023)

Let

$$
\hat{\boldsymbol{a}}_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)\right)=a_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)\right)-\left(\boldsymbol{\Pi}_{h 0}^{c} \boldsymbol{B}_{h}, \boldsymbol{b}_{h}\right)_{\boldsymbol{L}^{2}(D)}-\left(\boldsymbol{\Pi}_{h}^{c} \boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{L^{2}(D)}
$$

Then $\left(\lambda_{h} \neq 0,\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right)\right)$ satisfies

$$
a_{n}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)\right)=\lambda_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{b}_{n}\right)_{L^{2}(D)}+\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}(D)}\right)
$$

for all $\boldsymbol{b}_{h}, \mathbf{e}_{h} \in \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)$ iff it satisfies

$$
\hat{a}_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{E}_{h}\right),\left(\boldsymbol{b}_{h}, \boldsymbol{e}_{h}\right)\right)=\lambda_{h}\left(\left(\boldsymbol{B}_{h}, \boldsymbol{b}_{h}\right)_{\boldsymbol{L}^{2}(D)}+\left(\boldsymbol{E}_{h}, \boldsymbol{e}_{h}\right)_{\boldsymbol{L}^{2}(D)}\right)
$$

for all $\boldsymbol{b}_{h}, \boldsymbol{e}_{h} \in \boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right)$.

The 2d problem

The 2d setting

Bounded open Lipschitz polygon D in \mathbb{R}^{2}
Outward normal \boldsymbol{n}_{D} and tangential vector $\boldsymbol{t}_{D}:=\left(n_{2},-n_{1}\right)$

$$
\begin{aligned}
\boldsymbol{B}(\boldsymbol{x}, t) & \in \mathbb{C}^{2} \\
\nabla \times \boldsymbol{B} & :=\operatorname{curl} \boldsymbol{B}:=\partial_{1} B_{2}-\partial_{2} B_{1} \\
\boldsymbol{B} \times \boldsymbol{n}_{D} & :=-\boldsymbol{B} \cdot \boldsymbol{t}_{D} \\
\boldsymbol{L}^{2}(D) & :=L^{2}(D) \times L^{2}(D) \\
\boldsymbol{P}_{k}^{b}\left(\mathcal{T}_{h}\right) & :=P_{k}^{b}\left(\mathcal{T}_{h}\right) \times P_{k}^{b}\left(\mathcal{T}_{h}\right)
\end{aligned}
$$

$$
\begin{aligned}
E(\boldsymbol{x}, t) & \in \mathbb{C} \\
\nabla \times E & :=\operatorname{rot} E:=\left(\partial_{2} E,-\partial_{1} E\right) \\
E \times \boldsymbol{n}_{D} & :=E \boldsymbol{t}_{D}
\end{aligned}
$$

$$
\begin{aligned}
L^{2}(D) & :=\left\{v: D \rightarrow \mathbb{C}: \int_{D}|u|^{2}<\infty\right\} \\
P_{k}^{b}\left(\mathcal{T}_{h}\right) & :=\left\{v_{h} \in L^{2}(D):\left.v_{h}\right|_{k} \in \mathbb{P}_{k} \forall K \in \mathcal{T}_{h}\right\}
\end{aligned}
$$

Sesquilinear form

$$
\begin{aligned}
& \boldsymbol{L}_{h}^{c}:=\boldsymbol{L}^{2}(D) \times \boldsymbol{L}^{2}(D) \\
& \hat{a}_{h}: \boldsymbol{L}_{h}^{c} \times \boldsymbol{L}_{h}^{c} \rightarrow \mathbb{C} \text { defined exactly the same }
\end{aligned}
$$

Convergence of the smallest eigenvalue with positive imaginary part on the L-shaped domain

Domain $\quad D=(-1,1)^{2} \backslash((0,1) \times(-1,0))$

\mathbb{P}_{0} piecewise constants

dofs	h	λ_{1}	Rel. Error	ROC
1152	$1.8924 \mathrm{E}-01$	$8.3329 \mathrm{E}-02+1.2038 \mathrm{i}$	$6.9187 \mathrm{E}-02$	
4608	$9.4609 \mathrm{E}-02$	$4.2023 \mathrm{E}-02+1.2107 \mathrm{i}$	$3.4751 \mathrm{E}-02$	0.99
18432	$4.7318 \mathrm{E}-02$	$2.1105 \mathrm{E}-02+1.2132 \mathrm{i}$	$1.7420 \mathrm{E}-03$	1.00
73728	$2.3660 \mathrm{E}-02$	$1.0574 \mathrm{E}-02+1.2142 \mathrm{i}$	$8.7183 \mathrm{E}-04$	1.00

Convergence of the smallest eigenvalue with positive imaginary part on the L-shaped domain

\mathbb{P}_{1} polynomials

dofs	h	λ_{1}	Rel. Error	ROC
3456	$1.8924 \mathrm{E}-01$	$1.8802 \mathrm{E}-04+1.2132 \mathrm{i}$	$1.2715 \mathrm{E}-03$	
13824	$9.4609 \mathrm{E}-02$	$3.5848 \mathrm{E}-05+1.2142 \mathrm{i}$	$4.9610 \mathrm{E}-04$	1.36
55296	$4.7318 \mathrm{E}-02$	$7.2335 \mathrm{E}-06+1.2145 \mathrm{i}$	$2.0432 \mathrm{E}-04$	1.28
221184	$2.3660 \mathrm{E}-02$	$1.4319 \mathrm{E}-06+1.2147 \mathrm{i}$	$8.1821 \mathrm{E}-05$	1.32

\mathbb{P}_{2} polynomials

dofs	h	λ_{1}	Rel. Error	ROC
6912	$1.8924 \mathrm{E}-01$	$2.1445 \mathrm{E}-05+1.2141 \mathrm{i}$	$5.0330 \mathrm{E}-04$	
27648	$9.4609 \mathrm{E}-02$	$4.1952 \mathrm{E}-06+1.2145 \mathrm{i}$	$1.9755 \mathrm{E}-04$	1.35
110592	$4.7318 \mathrm{E}-02$	$8.8709 \mathrm{E}-07+1.2147 \mathrm{i}$	$8.1771 \mathrm{E}-05$	1.27
442368	$2.3660 \mathrm{E}-02$	$1.7644 \mathrm{E}-07+1.2147 \mathrm{i}$	$3.2725 \mathrm{E}-05$	1.32

\mathbb{Q}_{k} polynomials on quadrilateral meshes

Tensor-product polynomials
$\mathbb{Q}_{k}:=\{$ polynomials in 3 variables of degree at most k in each variable $\}$
Presence of spurious modes for \mathbb{Q}_{k} polynomials on quadrilateral meshes

\mathbb{Q}_{0}, quadrilaterals, $\mathrm{h}=8.8388 \mathrm{E}-02$

Conclusion

- The dG approximation of the Maxwell eigenvalue problem in first-order form is spectrally correct for \mathbb{P}_{k} polynomials on simplicial meshes.
- Some very recent numerical experiments indicate that for tensor product \mathbb{Q}_{k} polynomials on quadrilateral meshes, the method appears to have spurious modes.
- Further work is needed to determine the source of these spurious modes for the first-order system; there is literature about the second-order system.
- Future goals: solving the time-dependent Maxwell equations; multiphysics systems; the Euler-Maxwell equations.

References

- The discontinuous Galerkin approximation of the grad-div and curl-curl operators in first-order form is involution-preserving and spectrally correct, Alexandre Ern and Jean-Luc Guermond, 2023
- Spectral correctness of the discontinuous Galerkin approximation of the first-order form of Maxwell's equations with discontinuous coefficients, Alexandre Ern and Jean-Luc Guermond, 2023
- The deal.II finite element library, https://www.dealii.org/

Thank you!

