A Comparison of Finite Element Spaces for the Discontinuous Galerkin Approximation of the Maxwell Eigenvalue Problem in First-Order Form

Jordan Hoffart

Thanks and acknowledgements

Co-organizers

- Mansi Bezbaruah
- Matthias Maier

Collaborators

- Alexandre Ern
- Jean-Luc Guermond
- Matthias Maier

Funding

- National Science Foundation DMS-2045636
- Air Force Office of Scientific Research FA9550-23-1-0007

Today

Question

How do we discretize Maxwell's equations in space using discontinuous finite elements?

 $\partial_t \mathbf{E} = c \nabla \times \mathbf{B}$ $\partial_t \mathbf{B} = -c \nabla \times \mathbf{E}$ $\nabla \cdot \mathbf{E} = 0$ $\nabla \cdot \mathbf{B} = 0$

The Maxwell operator

$$\begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} \mapsto \begin{pmatrix} \mathbf{0} & \nabla \times \\ -\nabla \times & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix} = \begin{pmatrix} \nabla \times \mathbf{B} \\ -\nabla \times \mathbf{E} \end{pmatrix}$$

Goal

Discretize this operator with discontinuous finite elements in a way that

1. preserves the involutions

$$abla \cdot \mathbf{E} = 0$$

 $abla \cdot \mathbf{B} = 0$

2. and is spectrally correct

The Maxwell eigenvalue problem Setting

 $D \subset \mathbb{R}^3$ open, bounded, connected, and Lipschitz \mathbf{n}_D outward normal

$$\begin{aligned} \mathbf{H}(\operatorname{curl},D) &:= \left\{ \mathbf{e} \in L^2(D)^3 : \nabla \times \mathbf{e} \in L^2(D)^3 \right\} \\ \mathbf{H}_0(\operatorname{curl},D) &:= \left\{ \mathbf{b} \in \mathbf{H}(\operatorname{curl},D) : \mathbf{b} \times \mathbf{n}_D = \mathbf{0} \right\} \end{aligned}$$

$$\nabla \times : \mathbf{H}(\operatorname{curl}, D) \to L^2(D)^3$$
$$\nabla_0 \times : \mathbf{H}_0(\operatorname{curl}, D) \to L^2(D)^3$$

Problem Find $\lambda \in \mathbb{C}$, $\mathbf{E} \in \mathbf{H}(\operatorname{curl}, D)$, $\mathbf{B} \in \mathbf{H}_0(\operatorname{curl}, D)$ such that

$$\nabla_0 \times \mathbf{B} = \lambda \mathbf{E}$$
$$-\nabla \times \mathbf{E} = \lambda \mathbf{B}$$

The spectrum

 $\lambda = 0$ (**Bad**) Unphysical, no involutions

 $\lambda \neq 0$ (Good) Involution-preserving:

$$\begin{aligned} \nabla_0 \times \mathbf{B} &= \lambda \mathbf{E} \quad \Rightarrow \quad \mathbf{E} \in \operatorname{im}(\nabla_0 \times) \quad \Rightarrow \quad \nabla \cdot \mathbf{E} &= 0 \\ \nabla \times \mathbf{E} &= \lambda \mathbf{B} \quad \Rightarrow \quad \mathbf{B} \in \operatorname{im}(\nabla \times) \quad \Rightarrow \quad \nabla \cdot \mathbf{B} &= 0 \end{aligned}$$

Involution-preserving spaces

$$\mathbf{E} \in \mathbf{X}^{c} := \mathbf{H}(\operatorname{curl}, D) \cap \operatorname{im}(\nabla_{0} \times) = \mathbf{H}(\operatorname{curl}, D) \cap \ker(\nabla \times)^{\perp_{L^{2}}}$$
$$\mathbf{B} \in \mathbf{X}_{0}^{c} := \mathbf{H}_{0}(\operatorname{curl}, D) \cap \operatorname{im}(\nabla \times) = \mathbf{H}_{0}(\operatorname{curl}, D) \cap \ker(\nabla_{0} \times)^{\perp_{L^{2}}}$$

Jordan Hoffart (TAMU)

The spectrum

Theorem (A. Ern and J.-L. Guermond, 2023)

There is a compact operator S on $L^2(D)^3 \times L^2(D)^3$ such that $\lambda \neq 0$, $\mathbf{E} \in \mathbf{X}^c$, $\mathbf{B} \in \mathbf{X}_0^c$ solves the Maxwell eigenvalue problem iff $(1/\lambda, (\mathbf{E}, \mathbf{B}))$ is an eigenpair of S.

Remarks

- The involutions are essential to showing this
- *S* is a solution operator to a related boundary value problem

Meshes

- **1.** Reference cell \hat{K} (tetrahedron or cube)
- **2.** Reference transformations $T_{\mathcal{K}} : \widehat{\mathcal{K}} \to \mathcal{K}$ (affine or Cartesian)

$$[\mathbf{B}] := \mathbf{B}|_{\mathcal{K}_l} - \mathbf{B}|_{\mathcal{K}_r}$$
$$\{\mathbf{B}\} := \frac{\mathbf{B}|_{\mathcal{K}_l} + \mathbf{B}|_{\mathcal{K}_r}}{2}$$

Test and integrate on a cell, sum over cells

$$\sum_{\mathcal{K}} \int_{\mathcal{K}} (\nabla_0 \times \mathbf{B}) \cdot \mathbf{e} - (\nabla \times \mathbf{E}) \cdot \mathbf{b} \, \mathrm{d}\mathbf{x}$$

$$=\lambda\sum_{\mathcal{K}}\int_{\mathcal{K}}\mathbf{E}\cdot\mathbf{e}+\mathbf{B}\cdot\mathbf{b}\,\mathrm{d}\mathbf{x}$$

$$\begin{split} [\mathbf{B}] &:= \mathbf{B}|_{\mathcal{K}_l} - \mathbf{B}|_{\mathcal{K}_r} \\ \{\mathbf{B}\} &:= \frac{\mathbf{B}|_{\mathcal{K}_l} + \mathbf{B}|_{\mathcal{K}_r}}{2} \end{split}$$

Add consistency terms

$$\sum_{K} \int_{K} (\nabla_{0} \times \mathbf{B}) \cdot \mathbf{e} - (\nabla \times \mathbf{E}) \cdot \mathbf{b} \, \mathrm{d}\mathbf{x} + \sum_{F^{\circ}} \int_{F^{\circ}} [\mathbf{B}] \times \mathbf{n}_{F^{\circ}} \cdot \{\mathbf{e}\} - [\mathbf{E}] \times \mathbf{n}_{F^{\circ}} \cdot \{\mathbf{b}\} \, \mathrm{d}s$$
$$+ \sum_{F^{\partial}} \int_{F^{\partial}} \mathbf{B} \times \mathbf{n}_{D} \cdot \mathbf{e} \, \mathrm{d}s$$
$$= \lambda \sum_{K} \int_{K} \mathbf{E} \cdot \mathbf{e} + \mathbf{B} \cdot \mathbf{b} \, \mathrm{d}\mathbf{x}$$

Add penalty terms $a_h((\mathbf{E}, \mathbf{B}), (\mathbf{e}, \mathbf{b})) = \lambda m_h((\mathbf{E}, \mathbf{B}), (\mathbf{e}, \mathbf{b}))$

$$\sum_{K} \int_{K} (\nabla_{0} \times \mathbf{B}) \cdot \mathbf{e} - (\nabla \times \mathbf{E}) \cdot \mathbf{b} \, \mathrm{d}\mathbf{x} + \sum_{F^{\circ}} \int_{F^{\circ}} [\mathbf{B}] \times \mathbf{n}_{F^{\circ}} \cdot \{\mathbf{e}\} - [\mathbf{E}] \times \mathbf{n}_{F^{\circ}} \cdot \{\mathbf{b}\} \, \mathrm{d}s$$
$$+ \sum_{F^{\partial}} \int_{F^{\partial}} \mathbf{B} \times \mathbf{n}_{D} \cdot \mathbf{e} \, \mathrm{d}s + \sum_{F^{\circ}} \int_{F^{\circ}} ([\mathbf{B}] \times \mathbf{n}_{F}) \cdot ([\mathbf{b}] \times \mathbf{n}_{F}) + ([\mathbf{E}] \times \mathbf{n}_{F}) \cdot ([\mathbf{e}] \times \mathbf{n}_{F}) \, \mathrm{d}s$$
$$+ \sum_{F^{\partial}} \int_{F^{\partial}} (\mathbf{B} \times \mathbf{n}_{D}) \cdot (\mathbf{b} \times \mathbf{n}_{D}) \, \mathrm{d}s = \lambda \sum_{K} \int_{K} \mathbf{E} \cdot \mathbf{e} + \mathbf{B} \cdot \mathbf{b} \, \mathrm{d}x$$

Jordan Hoffart (TAMU)

Discrete eigenvalue problem

Find $\lambda_h \in \mathbb{C}$ and $\mathbf{E}_h, \mathbf{B}_h \in \mathbf{P}^b(\mathcal{T}_h, \widehat{\mathbf{P}})$ such that

$$a_h((\mathbf{E}_h, \mathbf{B}_h), (\mathbf{e}_h, \mathbf{b}_h)) = \lambda_h m_h((\mathbf{E}_h, \mathbf{B}_h), (\mathbf{e}_h, \mathbf{b}_h))$$

for all test functions \mathbf{e}_h , $\mathbf{b}_h \in \mathbf{P}^b(\mathcal{T}_h, \widehat{\mathbf{P}})$, where

$$\mathbf{P}^{b}(\mathcal{T}_{h}, \widehat{\mathbf{P}}) := \left\{ \mathbf{e}_{h} \in L^{2}(D)^{3} : \mathbf{e}_{h} \circ \mathcal{T}_{K} \in \widehat{\mathbf{P}} \text{ for all } K \in \mathcal{T}_{h} \right\}$$

and $\widehat{\mathbf{P}}$ is a space of vector-valued polynomials on \widehat{K}

Polynomial spaces

Simplicial meshes

• $\widehat{\mathbf{P}} = \mathbb{P}^3_k$ vector-valued polynomials total degree at most $k \ge 0$

Cartesian hexahedral meshes

- $\widehat{\mathbf{P}} = \mathbb{Q}_k^3$ vector-valued polynomials total degree at most $k \ge 0$ in each variable
- $\widehat{\mathbf{P}} = \mathbb{N}_k^3 := \mathbb{Q}_{k,k+1,k+1} \times \mathbb{Q}_{k+1,k,k+1} \times \mathbb{Q}_{k+1,k+1,k}$ Cartesian Nédélec polynomials of the first kind

•
$$\widehat{\mathbf{P}} = \mathbb{Q}^3_{k, \text{curl}} := \mathbb{Q}^3_k + \nabla \mathbb{Q}_{k+1}$$

Spectral Correctness

 $(\lambda, (\mathbf{E}, \mathbf{B}))$ exact eigenpairs, $(\lambda_h, (\mathbf{E}_h, \mathbf{B}_h))$ discrete eigenpairs

The approximation is **spectrally correct** if

- **1.** eigenvalues $\lambda_h \rightarrow \lambda$ (with correct multiplicity)
- **2.** eigenspaces $E(\lambda_h) \rightarrow E(\lambda)$ (subspace gap)
- 3. no spurious eigenvalues (numerical garbage)

🔋 D. Boffi

Finite element approximation of eigenvalue problems Article, Acta Numerica, 2010

Spectral Correctness

Question

Which polynomial spaces give a spectrally correct approximation?

Theorem (A. Ern and J.-L. Guermond, 2023)

Affine simplicial meshes with \mathbb{P}^3_k polynomials give a spectrally correct approximation.

Theorem

 \mathbb{Q}^3_k polynomials are spurious.

Theorem

Cartesian hexahedral meshes with \mathbb{N}_k^3 or $\mathbb{Q}_{k,\text{curl}}^3$ polynomials also give a spectrally correct approximation.

Spectral Correctness

Remarks about the proof

- **1.** Discrete versions of the involutions (being orthogonal to enough gradients) must be strong enough to establish spectral correctness
- **2.** \mathbb{Q}_k^3 is spurious because it does not contain enough gradients

$$\nabla \mathbb{Q}_{k+1} \not \subset \mathbb{Q}_k^3$$

$$\nabla \mathbb{P}_{k+1} \subset \mathbb{P}_k^3$$

$$\nabla \mathbb{Q}_{k+1} \subset \mathbb{N}_k^3$$

$$\nabla \mathbb{Q}_{k+1} \subset \mathbb{Q}_k^3 + \nabla \mathbb{Q}_{k+1} := \mathbb{Q}_{k,\text{curl}}^3$$

- 2D test problems, formally take $\mathbf{E} = (0, 0, E_z)$ and $\mathbf{B} = (B_x, B_y, 0)$
- deal.II finite element library for assembly
- ARPACK to solve the matrix-vector generalized eigenvalue problem

$$\mathbf{A}_h \mathbf{x}_h = \lambda_h \mathbf{M}_h \mathbf{x}_h$$

• Goal: approximate the smallest nonzero eigenvalues

Test 1: unit square

$$abla_0 \cdot \mathbf{B}^\perp = \lambda E$$

 $-\nabla^\perp E = \lambda \mathbf{B}$

Eigenvalues

$$\lambda_{j,k} = \pm i\pi \sqrt{j^2 + k^2}$$

Eigenfunctions

$$\mathbf{B}_{j,k} = \left(-i\frac{k}{\sqrt{j^2 + k^2}}\cos(j\pi x)\sin(k\pi y), \ i\frac{j}{\sqrt{j^2 + k^2}}\sin(j\pi x)\cos(k\pi y)\right)$$
$$E_{j,k} = \cos(j\pi x)\cos(k\pi y)$$

Jordan Hoffart (TAMU)

Jordan Hoffart (TAMU)

Numerical experiments Spurious eigenfunction for \mathbb{Q}^2_k

Convergence for $\lambda = i\pi$

Convergence for $\lambda = i\pi$

Spectrally correct eigenfunction for $\lambda = i\pi$

Test 2: L-shaped domain

Eigenfunctions can become singular at the re-entrant corner!

Imaginary parts of smallest eigenvalues (from M. Dauge)

singular! \rightarrow **1.214751754** 1.879901957 3.141592654 3.141592654 3.374830277

Convergence for singular λ

Convergence for singular λ

Numerical experiments Singular eigenfunction

Conclusion

- **1.** When discretizing the Maxwell operator with discontinuous finite elements
 - \mathbb{P}_k^3 polynomials on affine simplicial meshes are spectrally correct
 - $\mathbb{Q}_{k}^{\dot{3}}$ polynomials are spurious
 - \mathbb{N}_k^3 and $\mathbb{Q}_{k,\mathrm{curl}}^3$ polynomials on Cartesian hexahedral meshes are spectrally correct
- **2.** The spectrally correct spaces can obtain optimal error rates for the related eigenvalue problem
- 3. TODOs
 - Non-affine meshes?
 - Proofs for error estimates?
 - 3d simulations?
 - Time-dependent Maxwell?

Further reading

📄 A. Ern and J.-L. Guermond

Spectral correctness of the discontinuous Galerkin approximation of the first-order form of Maxwell's equations with discontinuous coefficients

Preprint, https://hal.science/hal-04145808, 2024

🔋 V. Perrier

Discrete de-Rham complex involving a discontinuous finite element space for velocities: the case of periodic straight triangular and Cartesian meshes

Preprint, https://arxiv.org/abs/2404.19545, 2024

📄 J. Hoffart

A comparison of finite element spaces for the discontinuous Galerkin approximation of the Maxwell eigenvalue problem in first-order form Preprint, 2024